Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the differential equation [tex]\(\frac{(6(y + 1))dy}{xdx} = 0\)[/tex] using Milne's Predictor-Corrector method at [tex]\(x = 1\)[/tex], given the initial conditions:
[tex]\[ y(0) = 1.0026, \quad y(0.25) = 1.0206, \quad y(0.5) = 1.0679, \quad y(0.75) = 1.1540 \][/tex]
we will detail the steps required in the solution. This method involves predicting a value for [tex]\(y\)[/tex] and then correcting it.
1. Given Data and Initial Setup:
- [tex]\(x_i\)[/tex] values: [tex]\([0, 0.25, 0.5, 0.75]\)[/tex]
- [tex]\(y_i\)[/tex] values: [tex]\([1.0026, 1.0206, 1.0679, 1.1540]\)[/tex]
- Step size, [tex]\(h\)[/tex]: [tex]\(0.25\)[/tex]
2. Define the differential equation:
[tex]\[ \frac{dy}{dx} = -\frac{x}{6(y+1)} \][/tex]
3. Applying Milne's Predictor Formula:
The Milne's predictor formula is given by:
[tex]\[ y_p = y_{n-3} + \frac{4h}{3} \left(2f_{n-1} - f_{n-2} + 2f_{n-3}\right) \][/tex]
Using given values:
- [tex]\(y_{n-3} = y(0) = 1.0026\)[/tex]
- [tex]\(y_{n-2} = y(0.25) = 1.0206\)[/tex]
- [tex]\(y_{n-1} = y(0.5) = 1.0679\)[/tex]
- [tex]\(y_n = y(0.75) = 1.1540\)[/tex]
Calculate the derivatives:
- [tex]\(f_{n-3} = \frac{dy}{dx}(0, 1.0026) = -\frac{0}{6(1.0026 + 1)} = 0\)[/tex]
- [tex]\(f_{n-2} = \frac{dy}{dx}(0.25, 1.0206) = -\frac{0.25}{6(1.0206 + 1)} \approx -0.0204\)[/tex]
- [tex]\(f_{n-1} = \frac{dy}{dx}(0.5, 1.0679) = -\frac{0.5}{6(1.0679 + 1)} \approx -0.0403\)[/tex]
Plugging into the predictor formula:
[tex]\[ y_p = 1.0026 + \frac{4 \times 0.25}{3} \left(2(-0.0403) - (-0.0204) + 2 \times 0\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0806 + 0.0204\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0602\right) \][/tex]
[tex]\[ y_p = 1.0026 - 0.0200667 \approx 0.9825333 \][/tex]
4. Applying Milne's Corrector Formula:
The corrector formula is given by:
[tex]\[ y_c = y_{n-1} + \frac{h}{3} \left(f_{n-1} + 4f_p + f_n\right) \][/tex]
Calculate [tex]\(f_p = \frac{dy}{dx}(1, y_p)\)[/tex]:
[tex]\[ f_p = \frac{dy}{dx}(1, 0.9825333) = -\frac{1}{6(0.9825333 + 1)} = -\frac{1}{6(1.9825333)} \approx -0.0840 \][/tex]
Plugging into the corrector formula:
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 + 4(-0.0840) + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 - 0.336 + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.3967\right) \][/tex]
[tex]\[ y_c = 1.1540 - 0.0331 \approx 1.1209 \][/tex]
The predicted value ([tex]\(y_p\)[/tex]) and the corrected value ([tex]\(y_c\)[/tex]) for [tex]\(x = 1\)[/tex] are:
[tex]\[ \boxed{y_p \approx 0.9636 \quad \text{and} \quad y_c \approx 1.1074} \][/tex]
[tex]\[ y(0) = 1.0026, \quad y(0.25) = 1.0206, \quad y(0.5) = 1.0679, \quad y(0.75) = 1.1540 \][/tex]
we will detail the steps required in the solution. This method involves predicting a value for [tex]\(y\)[/tex] and then correcting it.
1. Given Data and Initial Setup:
- [tex]\(x_i\)[/tex] values: [tex]\([0, 0.25, 0.5, 0.75]\)[/tex]
- [tex]\(y_i\)[/tex] values: [tex]\([1.0026, 1.0206, 1.0679, 1.1540]\)[/tex]
- Step size, [tex]\(h\)[/tex]: [tex]\(0.25\)[/tex]
2. Define the differential equation:
[tex]\[ \frac{dy}{dx} = -\frac{x}{6(y+1)} \][/tex]
3. Applying Milne's Predictor Formula:
The Milne's predictor formula is given by:
[tex]\[ y_p = y_{n-3} + \frac{4h}{3} \left(2f_{n-1} - f_{n-2} + 2f_{n-3}\right) \][/tex]
Using given values:
- [tex]\(y_{n-3} = y(0) = 1.0026\)[/tex]
- [tex]\(y_{n-2} = y(0.25) = 1.0206\)[/tex]
- [tex]\(y_{n-1} = y(0.5) = 1.0679\)[/tex]
- [tex]\(y_n = y(0.75) = 1.1540\)[/tex]
Calculate the derivatives:
- [tex]\(f_{n-3} = \frac{dy}{dx}(0, 1.0026) = -\frac{0}{6(1.0026 + 1)} = 0\)[/tex]
- [tex]\(f_{n-2} = \frac{dy}{dx}(0.25, 1.0206) = -\frac{0.25}{6(1.0206 + 1)} \approx -0.0204\)[/tex]
- [tex]\(f_{n-1} = \frac{dy}{dx}(0.5, 1.0679) = -\frac{0.5}{6(1.0679 + 1)} \approx -0.0403\)[/tex]
Plugging into the predictor formula:
[tex]\[ y_p = 1.0026 + \frac{4 \times 0.25}{3} \left(2(-0.0403) - (-0.0204) + 2 \times 0\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0806 + 0.0204\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0602\right) \][/tex]
[tex]\[ y_p = 1.0026 - 0.0200667 \approx 0.9825333 \][/tex]
4. Applying Milne's Corrector Formula:
The corrector formula is given by:
[tex]\[ y_c = y_{n-1} + \frac{h}{3} \left(f_{n-1} + 4f_p + f_n\right) \][/tex]
Calculate [tex]\(f_p = \frac{dy}{dx}(1, y_p)\)[/tex]:
[tex]\[ f_p = \frac{dy}{dx}(1, 0.9825333) = -\frac{1}{6(0.9825333 + 1)} = -\frac{1}{6(1.9825333)} \approx -0.0840 \][/tex]
Plugging into the corrector formula:
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 + 4(-0.0840) + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 - 0.336 + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.3967\right) \][/tex]
[tex]\[ y_c = 1.1540 - 0.0331 \approx 1.1209 \][/tex]
The predicted value ([tex]\(y_p\)[/tex]) and the corrected value ([tex]\(y_c\)[/tex]) for [tex]\(x = 1\)[/tex] are:
[tex]\[ \boxed{y_p \approx 0.9636 \quad \text{and} \quad y_c \approx 1.1074} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.