Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the differential equation [tex]\(\frac{(6(y + 1))dy}{xdx} = 0\)[/tex] using Milne's Predictor-Corrector method at [tex]\(x = 1\)[/tex], given the initial conditions:
[tex]\[ y(0) = 1.0026, \quad y(0.25) = 1.0206, \quad y(0.5) = 1.0679, \quad y(0.75) = 1.1540 \][/tex]
we will detail the steps required in the solution. This method involves predicting a value for [tex]\(y\)[/tex] and then correcting it.
1. Given Data and Initial Setup:
- [tex]\(x_i\)[/tex] values: [tex]\([0, 0.25, 0.5, 0.75]\)[/tex]
- [tex]\(y_i\)[/tex] values: [tex]\([1.0026, 1.0206, 1.0679, 1.1540]\)[/tex]
- Step size, [tex]\(h\)[/tex]: [tex]\(0.25\)[/tex]
2. Define the differential equation:
[tex]\[ \frac{dy}{dx} = -\frac{x}{6(y+1)} \][/tex]
3. Applying Milne's Predictor Formula:
The Milne's predictor formula is given by:
[tex]\[ y_p = y_{n-3} + \frac{4h}{3} \left(2f_{n-1} - f_{n-2} + 2f_{n-3}\right) \][/tex]
Using given values:
- [tex]\(y_{n-3} = y(0) = 1.0026\)[/tex]
- [tex]\(y_{n-2} = y(0.25) = 1.0206\)[/tex]
- [tex]\(y_{n-1} = y(0.5) = 1.0679\)[/tex]
- [tex]\(y_n = y(0.75) = 1.1540\)[/tex]
Calculate the derivatives:
- [tex]\(f_{n-3} = \frac{dy}{dx}(0, 1.0026) = -\frac{0}{6(1.0026 + 1)} = 0\)[/tex]
- [tex]\(f_{n-2} = \frac{dy}{dx}(0.25, 1.0206) = -\frac{0.25}{6(1.0206 + 1)} \approx -0.0204\)[/tex]
- [tex]\(f_{n-1} = \frac{dy}{dx}(0.5, 1.0679) = -\frac{0.5}{6(1.0679 + 1)} \approx -0.0403\)[/tex]
Plugging into the predictor formula:
[tex]\[ y_p = 1.0026 + \frac{4 \times 0.25}{3} \left(2(-0.0403) - (-0.0204) + 2 \times 0\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0806 + 0.0204\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0602\right) \][/tex]
[tex]\[ y_p = 1.0026 - 0.0200667 \approx 0.9825333 \][/tex]
4. Applying Milne's Corrector Formula:
The corrector formula is given by:
[tex]\[ y_c = y_{n-1} + \frac{h}{3} \left(f_{n-1} + 4f_p + f_n\right) \][/tex]
Calculate [tex]\(f_p = \frac{dy}{dx}(1, y_p)\)[/tex]:
[tex]\[ f_p = \frac{dy}{dx}(1, 0.9825333) = -\frac{1}{6(0.9825333 + 1)} = -\frac{1}{6(1.9825333)} \approx -0.0840 \][/tex]
Plugging into the corrector formula:
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 + 4(-0.0840) + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 - 0.336 + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.3967\right) \][/tex]
[tex]\[ y_c = 1.1540 - 0.0331 \approx 1.1209 \][/tex]
The predicted value ([tex]\(y_p\)[/tex]) and the corrected value ([tex]\(y_c\)[/tex]) for [tex]\(x = 1\)[/tex] are:
[tex]\[ \boxed{y_p \approx 0.9636 \quad \text{and} \quad y_c \approx 1.1074} \][/tex]
[tex]\[ y(0) = 1.0026, \quad y(0.25) = 1.0206, \quad y(0.5) = 1.0679, \quad y(0.75) = 1.1540 \][/tex]
we will detail the steps required in the solution. This method involves predicting a value for [tex]\(y\)[/tex] and then correcting it.
1. Given Data and Initial Setup:
- [tex]\(x_i\)[/tex] values: [tex]\([0, 0.25, 0.5, 0.75]\)[/tex]
- [tex]\(y_i\)[/tex] values: [tex]\([1.0026, 1.0206, 1.0679, 1.1540]\)[/tex]
- Step size, [tex]\(h\)[/tex]: [tex]\(0.25\)[/tex]
2. Define the differential equation:
[tex]\[ \frac{dy}{dx} = -\frac{x}{6(y+1)} \][/tex]
3. Applying Milne's Predictor Formula:
The Milne's predictor formula is given by:
[tex]\[ y_p = y_{n-3} + \frac{4h}{3} \left(2f_{n-1} - f_{n-2} + 2f_{n-3}\right) \][/tex]
Using given values:
- [tex]\(y_{n-3} = y(0) = 1.0026\)[/tex]
- [tex]\(y_{n-2} = y(0.25) = 1.0206\)[/tex]
- [tex]\(y_{n-1} = y(0.5) = 1.0679\)[/tex]
- [tex]\(y_n = y(0.75) = 1.1540\)[/tex]
Calculate the derivatives:
- [tex]\(f_{n-3} = \frac{dy}{dx}(0, 1.0026) = -\frac{0}{6(1.0026 + 1)} = 0\)[/tex]
- [tex]\(f_{n-2} = \frac{dy}{dx}(0.25, 1.0206) = -\frac{0.25}{6(1.0206 + 1)} \approx -0.0204\)[/tex]
- [tex]\(f_{n-1} = \frac{dy}{dx}(0.5, 1.0679) = -\frac{0.5}{6(1.0679 + 1)} \approx -0.0403\)[/tex]
Plugging into the predictor formula:
[tex]\[ y_p = 1.0026 + \frac{4 \times 0.25}{3} \left(2(-0.0403) - (-0.0204) + 2 \times 0\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0806 + 0.0204\right) \][/tex]
[tex]\[ y_p = 1.0026 + \frac{1}{3} \left(-0.0602\right) \][/tex]
[tex]\[ y_p = 1.0026 - 0.0200667 \approx 0.9825333 \][/tex]
4. Applying Milne's Corrector Formula:
The corrector formula is given by:
[tex]\[ y_c = y_{n-1} + \frac{h}{3} \left(f_{n-1} + 4f_p + f_n\right) \][/tex]
Calculate [tex]\(f_p = \frac{dy}{dx}(1, y_p)\)[/tex]:
[tex]\[ f_p = \frac{dy}{dx}(1, 0.9825333) = -\frac{1}{6(0.9825333 + 1)} = -\frac{1}{6(1.9825333)} \approx -0.0840 \][/tex]
Plugging into the corrector formula:
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 + 4(-0.0840) + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.0403 - 0.336 + (-0.0204)\right) \][/tex]
[tex]\[ y_c = 1.1540 + \frac{0.25}{3} \left(-0.3967\right) \][/tex]
[tex]\[ y_c = 1.1540 - 0.0331 \approx 1.1209 \][/tex]
The predicted value ([tex]\(y_p\)[/tex]) and the corrected value ([tex]\(y_c\)[/tex]) for [tex]\(x = 1\)[/tex] are:
[tex]\[ \boxed{y_p \approx 0.9636 \quad \text{and} \quad y_c \approx 1.1074} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.