Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the sets [tex]\( A \)[/tex] and [tex]\( R \)[/tex] based on their definitions.
1. Definition of Set [tex]\( A \)[/tex]:
[tex]\( A = \{x \mid x \text{ is an odd integer} \} \)[/tex]
This means set [tex]\(A\)[/tex] contains all odd integers. For example: [tex]\(\ldots, -3, -1, 1, 3, 5, 7, 9, \ldots\)[/tex].
2. Definition of Set [tex]\( R \)[/tex]:
[tex]\( R = \{3, 7, 11, 27\} \)[/tex]
This set contains exactly the elements 3, 7, 11, and 27.
3. Subset Definition:
A set [tex]\( R \)[/tex] is a subset of set [tex]\( A \)[/tex], written as [tex]\( R \subset A \)[/tex], if and only if every element in [tex]\( R \)[/tex] is also an element in [tex]\( A \)[/tex].
Let's check each element of [tex]\( R \)[/tex] to see if it belongs to [tex]\( A \)[/tex]:
- The element [tex]\( 3 \)[/tex] is an odd integer.
- The element [tex]\( 7 \)[/tex] is an odd integer.
- The element [tex]\( 11 \)[/tex] is an odd integer.
- The element [tex]\( 27 \)[/tex] is an odd integer.
Since all the elements of [tex]\( R \)[/tex] (i.e., 3, 7, 11, and 27) are indeed elements of [tex]\( A \)[/tex], we can conclude that [tex]\( R \subset A \)[/tex].
Given the interpretations of the options:
- "yes, because all the elements of set [tex]\( A \)[/tex] are in set [tex]\( R \)[/tex] " is incorrect because not all elements of [tex]\( A \)[/tex] need to be in [tex]\( R \)[/tex].
- "yes, because all the elements of set [tex]\( R \)[/tex] are in set [tex]\( A \)[/tex]" is correct because it aligns with our finding.
- "no, because each element in set [tex]\( A \)[/tex] is not represented in set [tex]\( R \)[/tex]" is incorrect because this is not a requirement for [tex]\( R \subset A \)[/tex].
- "no, because each element in set [tex]\( R \)[/tex] is not represented in set [tex]\( A \)[/tex]" is incorrect since we've already verified that all elements of [tex]\( R \)[/tex] are in [tex]\( A \)[/tex].
Therefore, the correct choice is:
Yes, because all the elements of set [tex]\( R \)[/tex] are in set [tex]\( A \)[/tex].
1. Definition of Set [tex]\( A \)[/tex]:
[tex]\( A = \{x \mid x \text{ is an odd integer} \} \)[/tex]
This means set [tex]\(A\)[/tex] contains all odd integers. For example: [tex]\(\ldots, -3, -1, 1, 3, 5, 7, 9, \ldots\)[/tex].
2. Definition of Set [tex]\( R \)[/tex]:
[tex]\( R = \{3, 7, 11, 27\} \)[/tex]
This set contains exactly the elements 3, 7, 11, and 27.
3. Subset Definition:
A set [tex]\( R \)[/tex] is a subset of set [tex]\( A \)[/tex], written as [tex]\( R \subset A \)[/tex], if and only if every element in [tex]\( R \)[/tex] is also an element in [tex]\( A \)[/tex].
Let's check each element of [tex]\( R \)[/tex] to see if it belongs to [tex]\( A \)[/tex]:
- The element [tex]\( 3 \)[/tex] is an odd integer.
- The element [tex]\( 7 \)[/tex] is an odd integer.
- The element [tex]\( 11 \)[/tex] is an odd integer.
- The element [tex]\( 27 \)[/tex] is an odd integer.
Since all the elements of [tex]\( R \)[/tex] (i.e., 3, 7, 11, and 27) are indeed elements of [tex]\( A \)[/tex], we can conclude that [tex]\( R \subset A \)[/tex].
Given the interpretations of the options:
- "yes, because all the elements of set [tex]\( A \)[/tex] are in set [tex]\( R \)[/tex] " is incorrect because not all elements of [tex]\( A \)[/tex] need to be in [tex]\( R \)[/tex].
- "yes, because all the elements of set [tex]\( R \)[/tex] are in set [tex]\( A \)[/tex]" is correct because it aligns with our finding.
- "no, because each element in set [tex]\( A \)[/tex] is not represented in set [tex]\( R \)[/tex]" is incorrect because this is not a requirement for [tex]\( R \subset A \)[/tex].
- "no, because each element in set [tex]\( R \)[/tex] is not represented in set [tex]\( A \)[/tex]" is incorrect since we've already verified that all elements of [tex]\( R \)[/tex] are in [tex]\( A \)[/tex].
Therefore, the correct choice is:
Yes, because all the elements of set [tex]\( R \)[/tex] are in set [tex]\( A \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.