Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the steps for finding the inverse of the function [tex]\( f(x) = \sqrt{7x - 21} \)[/tex], we can arrange the following steps in the correct order:
1. Start with [tex]\( x = \sqrt{7y - 21} \)[/tex]
2. Square both sides to remove the square root:
[tex]\[ x^2 = 7y - 21 \][/tex]
3. Add 21 to both sides to isolate the [tex]\( y \)[/tex]-term:
[tex]\[ x^2 + 21 = 7y \][/tex]
4. Solve for [tex]\( y \)[/tex] by dividing both sides by 7:
[tex]\[ y = \frac{1}{7} (x^2 + 21), \text{ where } x \geq 0 \][/tex]
Arranging the given steps, the correct order is:
1. [tex]\( x = \sqrt{7y - 21} \)[/tex]
2. [tex]\( x^2 = 7y - 21 \)[/tex]
3. [tex]\( x^2 + 21 = 7y \)[/tex]
4. [tex]\( \frac{1}{7}(x^2 + 21) = f^{-1}(x), \text{ where } x \geq 0 \)[/tex]
So, the steps in order should be:
1. [tex]\( x = \sqrt{7 y - 21} \)[/tex]
2. [tex]\( x^2 = 7 y - 21 \)[/tex]
3. [tex]\( x^2 + 21 = 7 y \)[/tex]
4. [tex]\( \frac{1}{7}(x^2 + 21) = f^{-1}(x), \text { where } x \geq 0 \)[/tex]
1. Start with [tex]\( x = \sqrt{7y - 21} \)[/tex]
2. Square both sides to remove the square root:
[tex]\[ x^2 = 7y - 21 \][/tex]
3. Add 21 to both sides to isolate the [tex]\( y \)[/tex]-term:
[tex]\[ x^2 + 21 = 7y \][/tex]
4. Solve for [tex]\( y \)[/tex] by dividing both sides by 7:
[tex]\[ y = \frac{1}{7} (x^2 + 21), \text{ where } x \geq 0 \][/tex]
Arranging the given steps, the correct order is:
1. [tex]\( x = \sqrt{7y - 21} \)[/tex]
2. [tex]\( x^2 = 7y - 21 \)[/tex]
3. [tex]\( x^2 + 21 = 7y \)[/tex]
4. [tex]\( \frac{1}{7}(x^2 + 21) = f^{-1}(x), \text{ where } x \geq 0 \)[/tex]
So, the steps in order should be:
1. [tex]\( x = \sqrt{7 y - 21} \)[/tex]
2. [tex]\( x^2 = 7 y - 21 \)[/tex]
3. [tex]\( x^2 + 21 = 7 y \)[/tex]
4. [tex]\( \frac{1}{7}(x^2 + 21) = f^{-1}(x), \text { where } x \geq 0 \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.