Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Drag each tile to the correct box. Not all tiles will be used.

Consider the function [tex]f(x)=\sqrt{7x-21}[/tex].

Place the steps for finding [tex]f^{-1}(x)[/tex] in the correct order.

[tex]
\begin{array}{c}
1. x=\sqrt{7y-21} \\
2. x^2=7y-21 \\
3. x^2+21=7y \\
4. \frac{1}{7}\left(x^2-21\right)=f^{-1}(x), \text{ where } x \geq 0 \\
\hline
\end{array}
[/tex]


Sagot :

To determine the steps for finding the inverse of the function [tex]\( f(x) = \sqrt{7x - 21} \)[/tex], we can arrange the following steps in the correct order:

1. Start with [tex]\( x = \sqrt{7y - 21} \)[/tex]
2. Square both sides to remove the square root:
[tex]\[ x^2 = 7y - 21 \][/tex]
3. Add 21 to both sides to isolate the [tex]\( y \)[/tex]-term:
[tex]\[ x^2 + 21 = 7y \][/tex]
4. Solve for [tex]\( y \)[/tex] by dividing both sides by 7:
[tex]\[ y = \frac{1}{7} (x^2 + 21), \text{ where } x \geq 0 \][/tex]

Arranging the given steps, the correct order is:

1. [tex]\( x = \sqrt{7y - 21} \)[/tex]
2. [tex]\( x^2 = 7y - 21 \)[/tex]
3. [tex]\( x^2 + 21 = 7y \)[/tex]
4. [tex]\( \frac{1}{7}(x^2 + 21) = f^{-1}(x), \text{ where } x \geq 0 \)[/tex]

So, the steps in order should be:

1. [tex]\( x = \sqrt{7 y - 21} \)[/tex]
2. [tex]\( x^2 = 7 y - 21 \)[/tex]
3. [tex]\( x^2 + 21 = 7 y \)[/tex]
4. [tex]\( \frac{1}{7}(x^2 + 21) = f^{-1}(x), \text { where } x \geq 0 \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.