Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's break down the solution in a detailed, step-by-step manner:
### Part (a): Calculate the Population Variance, [tex]\(\sigma^2\)[/tex]
1. Determine the Ages of the Children:
The ages of the children surveyed are 2, 3, and 10.
2. Calculate the Population Mean ([tex]\(\mu\)[/tex]):
[tex]\[ \mu = \frac{2 + 3 + 10}{3} = \frac{15}{3} = 5 \][/tex]
3. Calculate the Population Variance ([tex]\(\sigma^2\)[/tex]):
The variance is calculated using the formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
Where [tex]\(x_i\)[/tex] are the individual ages and [tex]\(N\)[/tex] is the number of children.
Calculate each squared deviation from the mean:
[tex]\[ (2-5)^2 = 9, \quad (3-5)^2 = 4, \quad (10-5)^2 = 25 \][/tex]
Sum of squared deviations:
[tex]\[ 9 + 4 + 25 = 38 \][/tex]
Population variance:
[tex]\[ \sigma^2 = \frac{38}{3} \approx 12.667 \][/tex]
So, the value of the population variance [tex]\(\sigma^2\)[/tex] is approximately 12.667 (rounded to three decimal places).
### Part (b): Calculate the Variance for Each of the Nine Samples and Summarize the Sampling Distribution
1. List the Nine Different Samples of Size [tex]\(n=2\)[/tex]:
The samples are:
[tex]\[ (2, 2), (2, 3), (2, 10), (3, 2), (3, 3), (3, 10), (10, 2), (10, 3), (10, 10) \][/tex]
2. Calculate the Variance for Each Sample:
The variance of a sample [tex]\((x_1, x_2)\)[/tex] is calculated using the formula:
[tex]\[ \text{Variance} = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2}{2} \][/tex]
Where [tex]\(\bar{x}\)[/tex] is the mean of the sample.
- Sample (2, 2):
[tex]\[ \bar{x} = \frac{2+2}{2} = 2 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2)^2 + (2-2)^2}{2} = 0.0 \][/tex]
- Sample (2, 3):
[tex]\[ \bar{x} = \frac{2+3}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2.5)^2 + (3-2.5)^2}{2} = 0.25 \][/tex]
- Sample (2, 10):
[tex]\[ \bar{x} = \frac{2+10}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-6)^2 + (10-6)^2}{2} = 16.0 \][/tex]
- Sample (3, 2):
[tex]\[ \bar{x} = \frac{3+2}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-2.5)^2 + (2-2.5)^2}{2} = 0.25 \][/tex]
- Sample (3, 3):
[tex]\[ \bar{x} = \frac{3+3}{2} = 3 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-3)^2 + (3-3)^2}{2} = 0.0 \][/tex]
- Sample (3, 10):
[tex]\[ \bar{x} = \frac{3+10}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-6.5)^2 + (10-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 2):
[tex]\[ \bar{x} = \frac{10+2}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6)^2 + (2-6)^2}{2} = 16.0 \][/tex]
- Sample (10, 3):
[tex]\[ \bar{x} = \frac{10+3}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6.5)^2 + (3-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 10):
[tex]\[ \bar{x} = \frac{10+10}{2} = 10 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-10)^2 + (10-10)^2}{2} = 0.0 \][/tex]
The variances of the nine samples are:
[tex]\[ [0.0, 0.25, 16.0, 0.25, 0.0, 12.25, 16.0, 12.25, 0.0] \][/tex]
3. Summarize the Sampling Distribution of the Variances:
Identify the unique variances and their probabilities:
- Unique Variances: [tex]\(0.0, 0.25, 12.25, 16.0\)[/tex]
- Count of Each Variance:
[tex]\[ 0.0 \text{ occurs } 3 \text{ times} \][/tex]
[tex]\[ 0.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 12.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 16.0 \text{ occurs } 2 \text{ times} \][/tex]
- Probability Distribution:
[tex]\[ P(0.0) = \frac{3}{9} \approx 0.333 \][/tex]
[tex]\[ P(0.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(12.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(16.0) = \frac{2}{9} \approx 0.222 \][/tex]
Summarized in a table, the probability distribution of the distinct variance values is:
| Variance | Probability |
|----------|-------------|
| 0.0 | 0.333 |
| 0.25 | 0.222 |
| 12.25 | 0.222 |
| 16.0 | 0.222 |
### Part (a): Calculate the Population Variance, [tex]\(\sigma^2\)[/tex]
1. Determine the Ages of the Children:
The ages of the children surveyed are 2, 3, and 10.
2. Calculate the Population Mean ([tex]\(\mu\)[/tex]):
[tex]\[ \mu = \frac{2 + 3 + 10}{3} = \frac{15}{3} = 5 \][/tex]
3. Calculate the Population Variance ([tex]\(\sigma^2\)[/tex]):
The variance is calculated using the formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
Where [tex]\(x_i\)[/tex] are the individual ages and [tex]\(N\)[/tex] is the number of children.
Calculate each squared deviation from the mean:
[tex]\[ (2-5)^2 = 9, \quad (3-5)^2 = 4, \quad (10-5)^2 = 25 \][/tex]
Sum of squared deviations:
[tex]\[ 9 + 4 + 25 = 38 \][/tex]
Population variance:
[tex]\[ \sigma^2 = \frac{38}{3} \approx 12.667 \][/tex]
So, the value of the population variance [tex]\(\sigma^2\)[/tex] is approximately 12.667 (rounded to three decimal places).
### Part (b): Calculate the Variance for Each of the Nine Samples and Summarize the Sampling Distribution
1. List the Nine Different Samples of Size [tex]\(n=2\)[/tex]:
The samples are:
[tex]\[ (2, 2), (2, 3), (2, 10), (3, 2), (3, 3), (3, 10), (10, 2), (10, 3), (10, 10) \][/tex]
2. Calculate the Variance for Each Sample:
The variance of a sample [tex]\((x_1, x_2)\)[/tex] is calculated using the formula:
[tex]\[ \text{Variance} = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2}{2} \][/tex]
Where [tex]\(\bar{x}\)[/tex] is the mean of the sample.
- Sample (2, 2):
[tex]\[ \bar{x} = \frac{2+2}{2} = 2 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2)^2 + (2-2)^2}{2} = 0.0 \][/tex]
- Sample (2, 3):
[tex]\[ \bar{x} = \frac{2+3}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2.5)^2 + (3-2.5)^2}{2} = 0.25 \][/tex]
- Sample (2, 10):
[tex]\[ \bar{x} = \frac{2+10}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-6)^2 + (10-6)^2}{2} = 16.0 \][/tex]
- Sample (3, 2):
[tex]\[ \bar{x} = \frac{3+2}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-2.5)^2 + (2-2.5)^2}{2} = 0.25 \][/tex]
- Sample (3, 3):
[tex]\[ \bar{x} = \frac{3+3}{2} = 3 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-3)^2 + (3-3)^2}{2} = 0.0 \][/tex]
- Sample (3, 10):
[tex]\[ \bar{x} = \frac{3+10}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-6.5)^2 + (10-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 2):
[tex]\[ \bar{x} = \frac{10+2}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6)^2 + (2-6)^2}{2} = 16.0 \][/tex]
- Sample (10, 3):
[tex]\[ \bar{x} = \frac{10+3}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6.5)^2 + (3-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 10):
[tex]\[ \bar{x} = \frac{10+10}{2} = 10 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-10)^2 + (10-10)^2}{2} = 0.0 \][/tex]
The variances of the nine samples are:
[tex]\[ [0.0, 0.25, 16.0, 0.25, 0.0, 12.25, 16.0, 12.25, 0.0] \][/tex]
3. Summarize the Sampling Distribution of the Variances:
Identify the unique variances and their probabilities:
- Unique Variances: [tex]\(0.0, 0.25, 12.25, 16.0\)[/tex]
- Count of Each Variance:
[tex]\[ 0.0 \text{ occurs } 3 \text{ times} \][/tex]
[tex]\[ 0.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 12.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 16.0 \text{ occurs } 2 \text{ times} \][/tex]
- Probability Distribution:
[tex]\[ P(0.0) = \frac{3}{9} \approx 0.333 \][/tex]
[tex]\[ P(0.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(12.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(16.0) = \frac{2}{9} \approx 0.222 \][/tex]
Summarized in a table, the probability distribution of the distinct variance values is:
| Variance | Probability |
|----------|-------------|
| 0.0 | 0.333 |
| 0.25 | 0.222 |
| 12.25 | 0.222 |
| 16.0 | 0.222 |
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.