Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's break down the solution in a detailed, step-by-step manner:
### Part (a): Calculate the Population Variance, [tex]\(\sigma^2\)[/tex]
1. Determine the Ages of the Children:
The ages of the children surveyed are 2, 3, and 10.
2. Calculate the Population Mean ([tex]\(\mu\)[/tex]):
[tex]\[ \mu = \frac{2 + 3 + 10}{3} = \frac{15}{3} = 5 \][/tex]
3. Calculate the Population Variance ([tex]\(\sigma^2\)[/tex]):
The variance is calculated using the formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
Where [tex]\(x_i\)[/tex] are the individual ages and [tex]\(N\)[/tex] is the number of children.
Calculate each squared deviation from the mean:
[tex]\[ (2-5)^2 = 9, \quad (3-5)^2 = 4, \quad (10-5)^2 = 25 \][/tex]
Sum of squared deviations:
[tex]\[ 9 + 4 + 25 = 38 \][/tex]
Population variance:
[tex]\[ \sigma^2 = \frac{38}{3} \approx 12.667 \][/tex]
So, the value of the population variance [tex]\(\sigma^2\)[/tex] is approximately 12.667 (rounded to three decimal places).
### Part (b): Calculate the Variance for Each of the Nine Samples and Summarize the Sampling Distribution
1. List the Nine Different Samples of Size [tex]\(n=2\)[/tex]:
The samples are:
[tex]\[ (2, 2), (2, 3), (2, 10), (3, 2), (3, 3), (3, 10), (10, 2), (10, 3), (10, 10) \][/tex]
2. Calculate the Variance for Each Sample:
The variance of a sample [tex]\((x_1, x_2)\)[/tex] is calculated using the formula:
[tex]\[ \text{Variance} = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2}{2} \][/tex]
Where [tex]\(\bar{x}\)[/tex] is the mean of the sample.
- Sample (2, 2):
[tex]\[ \bar{x} = \frac{2+2}{2} = 2 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2)^2 + (2-2)^2}{2} = 0.0 \][/tex]
- Sample (2, 3):
[tex]\[ \bar{x} = \frac{2+3}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2.5)^2 + (3-2.5)^2}{2} = 0.25 \][/tex]
- Sample (2, 10):
[tex]\[ \bar{x} = \frac{2+10}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-6)^2 + (10-6)^2}{2} = 16.0 \][/tex]
- Sample (3, 2):
[tex]\[ \bar{x} = \frac{3+2}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-2.5)^2 + (2-2.5)^2}{2} = 0.25 \][/tex]
- Sample (3, 3):
[tex]\[ \bar{x} = \frac{3+3}{2} = 3 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-3)^2 + (3-3)^2}{2} = 0.0 \][/tex]
- Sample (3, 10):
[tex]\[ \bar{x} = \frac{3+10}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-6.5)^2 + (10-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 2):
[tex]\[ \bar{x} = \frac{10+2}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6)^2 + (2-6)^2}{2} = 16.0 \][/tex]
- Sample (10, 3):
[tex]\[ \bar{x} = \frac{10+3}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6.5)^2 + (3-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 10):
[tex]\[ \bar{x} = \frac{10+10}{2} = 10 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-10)^2 + (10-10)^2}{2} = 0.0 \][/tex]
The variances of the nine samples are:
[tex]\[ [0.0, 0.25, 16.0, 0.25, 0.0, 12.25, 16.0, 12.25, 0.0] \][/tex]
3. Summarize the Sampling Distribution of the Variances:
Identify the unique variances and their probabilities:
- Unique Variances: [tex]\(0.0, 0.25, 12.25, 16.0\)[/tex]
- Count of Each Variance:
[tex]\[ 0.0 \text{ occurs } 3 \text{ times} \][/tex]
[tex]\[ 0.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 12.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 16.0 \text{ occurs } 2 \text{ times} \][/tex]
- Probability Distribution:
[tex]\[ P(0.0) = \frac{3}{9} \approx 0.333 \][/tex]
[tex]\[ P(0.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(12.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(16.0) = \frac{2}{9} \approx 0.222 \][/tex]
Summarized in a table, the probability distribution of the distinct variance values is:
| Variance | Probability |
|----------|-------------|
| 0.0 | 0.333 |
| 0.25 | 0.222 |
| 12.25 | 0.222 |
| 16.0 | 0.222 |
### Part (a): Calculate the Population Variance, [tex]\(\sigma^2\)[/tex]
1. Determine the Ages of the Children:
The ages of the children surveyed are 2, 3, and 10.
2. Calculate the Population Mean ([tex]\(\mu\)[/tex]):
[tex]\[ \mu = \frac{2 + 3 + 10}{3} = \frac{15}{3} = 5 \][/tex]
3. Calculate the Population Variance ([tex]\(\sigma^2\)[/tex]):
The variance is calculated using the formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
Where [tex]\(x_i\)[/tex] are the individual ages and [tex]\(N\)[/tex] is the number of children.
Calculate each squared deviation from the mean:
[tex]\[ (2-5)^2 = 9, \quad (3-5)^2 = 4, \quad (10-5)^2 = 25 \][/tex]
Sum of squared deviations:
[tex]\[ 9 + 4 + 25 = 38 \][/tex]
Population variance:
[tex]\[ \sigma^2 = \frac{38}{3} \approx 12.667 \][/tex]
So, the value of the population variance [tex]\(\sigma^2\)[/tex] is approximately 12.667 (rounded to three decimal places).
### Part (b): Calculate the Variance for Each of the Nine Samples and Summarize the Sampling Distribution
1. List the Nine Different Samples of Size [tex]\(n=2\)[/tex]:
The samples are:
[tex]\[ (2, 2), (2, 3), (2, 10), (3, 2), (3, 3), (3, 10), (10, 2), (10, 3), (10, 10) \][/tex]
2. Calculate the Variance for Each Sample:
The variance of a sample [tex]\((x_1, x_2)\)[/tex] is calculated using the formula:
[tex]\[ \text{Variance} = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2}{2} \][/tex]
Where [tex]\(\bar{x}\)[/tex] is the mean of the sample.
- Sample (2, 2):
[tex]\[ \bar{x} = \frac{2+2}{2} = 2 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2)^2 + (2-2)^2}{2} = 0.0 \][/tex]
- Sample (2, 3):
[tex]\[ \bar{x} = \frac{2+3}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-2.5)^2 + (3-2.5)^2}{2} = 0.25 \][/tex]
- Sample (2, 10):
[tex]\[ \bar{x} = \frac{2+10}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(2-6)^2 + (10-6)^2}{2} = 16.0 \][/tex]
- Sample (3, 2):
[tex]\[ \bar{x} = \frac{3+2}{2} = 2.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-2.5)^2 + (2-2.5)^2}{2} = 0.25 \][/tex]
- Sample (3, 3):
[tex]\[ \bar{x} = \frac{3+3}{2} = 3 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-3)^2 + (3-3)^2}{2} = 0.0 \][/tex]
- Sample (3, 10):
[tex]\[ \bar{x} = \frac{3+10}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(3-6.5)^2 + (10-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 2):
[tex]\[ \bar{x} = \frac{10+2}{2} = 6 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6)^2 + (2-6)^2}{2} = 16.0 \][/tex]
- Sample (10, 3):
[tex]\[ \bar{x} = \frac{10+3}{2} = 6.5 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-6.5)^2 + (3-6.5)^2}{2} = 12.25 \][/tex]
- Sample (10, 10):
[tex]\[ \bar{x} = \frac{10+10}{2} = 10 \][/tex]
[tex]\[ \text{Variance} = \frac{(10-10)^2 + (10-10)^2}{2} = 0.0 \][/tex]
The variances of the nine samples are:
[tex]\[ [0.0, 0.25, 16.0, 0.25, 0.0, 12.25, 16.0, 12.25, 0.0] \][/tex]
3. Summarize the Sampling Distribution of the Variances:
Identify the unique variances and their probabilities:
- Unique Variances: [tex]\(0.0, 0.25, 12.25, 16.0\)[/tex]
- Count of Each Variance:
[tex]\[ 0.0 \text{ occurs } 3 \text{ times} \][/tex]
[tex]\[ 0.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 12.25 \text{ occurs } 2 \text{ times} \][/tex]
[tex]\[ 16.0 \text{ occurs } 2 \text{ times} \][/tex]
- Probability Distribution:
[tex]\[ P(0.0) = \frac{3}{9} \approx 0.333 \][/tex]
[tex]\[ P(0.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(12.25) = \frac{2}{9} \approx 0.222 \][/tex]
[tex]\[ P(16.0) = \frac{2}{9} \approx 0.222 \][/tex]
Summarized in a table, the probability distribution of the distinct variance values is:
| Variance | Probability |
|----------|-------------|
| 0.0 | 0.333 |
| 0.25 | 0.222 |
| 12.25 | 0.222 |
| 16.0 | 0.222 |
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.