Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's go through the hypothesis test step by step:
1. Define the hypotheses:
- Null hypothesis [tex]\(H_0\)[/tex]: [tex]\(p = 0.6\)[/tex], where [tex]\(p\)[/tex] is the true proportion of women who will see skin improvement.
- Alternative hypothesis [tex]\(H_a\)[/tex]: [tex]\(p > 0.6\)[/tex] (we are testing if the proportion of improvement is greater than 60%).
2. Given data:
- Sample size ([tex]\(n\)[/tex]): 42
- Number of successes ([tex]\(x\)[/tex]): 36
- Sample proportion ([tex]\(\hat{p}\)[/tex]): [tex]\(\hat{p} = \frac{x}{n} = \frac{36}{42} = 0.8571\)[/tex]
- Null hypothesis proportion ([tex]\(p_0\)[/tex]): 0.6
- Significance level ([tex]\(\alpha\)[/tex]): 0.05
3. Calculate the standard error:
- Standard error ([tex]\(SE\)[/tex]): [tex]\[ SE = \sqrt{\frac{p_0 (1 - p_0)}{n}} \][/tex]
[tex]\[ SE = \sqrt{\frac{0.6 \times (1 - 0.6)}{42}} \approx 0.0756 \][/tex]
4. Calculate the z-test statistic:
- [tex]\(z\)[/tex]-statistic: [tex]\[ z = \frac{\hat{p} - p_0}{SE} \][/tex]
[tex]\[ z = \frac{0.8571 - 0.6}{0.0756} \approx 3.4017 \][/tex]
5. Determine the critical value for a one-tailed test at [tex]\(\alpha = 0.05\)[/tex]:
- The critical value ([tex]\(z^\)[/tex]) for a one-tailed test at [tex]\(\alpha = 0.05\)[/tex] is approximately 1.645.
6. Make the decision:
- If the [tex]\(z\)[/tex]-statistic is greater than the critical value [tex]\(z^\)[/tex], we reject the null hypothesis. In this case:
[tex]\[ z = 3.4017 > 1.645 \][/tex]
Because the z-test statistic (3.4017) is greater than the critical value (1.645), we reject the null hypothesis.
Conclusions:
(a) Test statistic: [tex]\( z = 3.4017 \)[/tex]
(b) Critical Value: [tex]\( z^* = 1.645 \)[/tex]
(c) The final conclusion is:
A. We can reject the null hypothesis that [tex]\( p = 0.6 \)[/tex] and accept that [tex]\( p > 0.6 \)[/tex]. That is, the cream can improve the skin of more than 60% of women over 50.
1. Define the hypotheses:
- Null hypothesis [tex]\(H_0\)[/tex]: [tex]\(p = 0.6\)[/tex], where [tex]\(p\)[/tex] is the true proportion of women who will see skin improvement.
- Alternative hypothesis [tex]\(H_a\)[/tex]: [tex]\(p > 0.6\)[/tex] (we are testing if the proportion of improvement is greater than 60%).
2. Given data:
- Sample size ([tex]\(n\)[/tex]): 42
- Number of successes ([tex]\(x\)[/tex]): 36
- Sample proportion ([tex]\(\hat{p}\)[/tex]): [tex]\(\hat{p} = \frac{x}{n} = \frac{36}{42} = 0.8571\)[/tex]
- Null hypothesis proportion ([tex]\(p_0\)[/tex]): 0.6
- Significance level ([tex]\(\alpha\)[/tex]): 0.05
3. Calculate the standard error:
- Standard error ([tex]\(SE\)[/tex]): [tex]\[ SE = \sqrt{\frac{p_0 (1 - p_0)}{n}} \][/tex]
[tex]\[ SE = \sqrt{\frac{0.6 \times (1 - 0.6)}{42}} \approx 0.0756 \][/tex]
4. Calculate the z-test statistic:
- [tex]\(z\)[/tex]-statistic: [tex]\[ z = \frac{\hat{p} - p_0}{SE} \][/tex]
[tex]\[ z = \frac{0.8571 - 0.6}{0.0756} \approx 3.4017 \][/tex]
5. Determine the critical value for a one-tailed test at [tex]\(\alpha = 0.05\)[/tex]:
- The critical value ([tex]\(z^\)[/tex]) for a one-tailed test at [tex]\(\alpha = 0.05\)[/tex] is approximately 1.645.
6. Make the decision:
- If the [tex]\(z\)[/tex]-statistic is greater than the critical value [tex]\(z^\)[/tex], we reject the null hypothesis. In this case:
[tex]\[ z = 3.4017 > 1.645 \][/tex]
Because the z-test statistic (3.4017) is greater than the critical value (1.645), we reject the null hypothesis.
Conclusions:
(a) Test statistic: [tex]\( z = 3.4017 \)[/tex]
(b) Critical Value: [tex]\( z^* = 1.645 \)[/tex]
(c) The final conclusion is:
A. We can reject the null hypothesis that [tex]\( p = 0.6 \)[/tex] and accept that [tex]\( p > 0.6 \)[/tex]. That is, the cream can improve the skin of more than 60% of women over 50.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.