Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To accurately compare the domain and range of the functions [tex]\( f(x) = 3x^2 \)[/tex], [tex]\( g(x) = \frac{1}{3x} \)[/tex], and [tex]\( h(x) = 3x \)[/tex], we need to analyze each function individually.
### Function [tex]\( f(x) = 3x^2 \)[/tex]
1. Domain: The function [tex]\( f(x) = 3x^2 \)[/tex] is a polynomial, which means it is defined for all real numbers. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( f(x) = 3x^2 \)[/tex] is a quadratic function that opens upwards (as the coefficient of [tex]\( x^2 \)[/tex] is positive), the minimum value of [tex]\( f(x) \)[/tex] is 0 (when [tex]\( x = 0 \)[/tex]). Thus, the range of [tex]\( f(x) \)[/tex] is all non-negative real numbers (i.e., [tex]\( [0, \infty) \)[/tex]).
### Function [tex]\( g(x) = \frac{1}{3x} \)[/tex]
1. Domain: The function [tex]\( g(x) = \frac{1}{3x} \)[/tex] involves division by [tex]\( x \)[/tex]. Division by zero is undefined, so [tex]\( x \)[/tex] cannot be 0. Therefore, the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0.
2. Range: Since [tex]\( g(x) = \frac{1}{3x} \)[/tex] can never be 0 (it approaches infinity or negative infinity as [tex]\( x \)[/tex] gets close to 0, and it takes all positive and negative real values), the range of [tex]\( g(x) \)[/tex] is all real numbers except 0.
### Function [tex]\( h(x) = 3x \)[/tex]
1. Domain: The function [tex]\( h(x) = 3x \)[/tex] is a linear function, which means it is defined for all real numbers. Therefore, the domain of [tex]\( h(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( h(x) = 3x \)[/tex] is a linear function that can take any real value (as [tex]\( x \)[/tex] can be any real number), the range of [tex]\( h(x) \)[/tex] is all real numbers.
### Summary of Domain and Range
- Domain:
- [tex]\( f(x) \)[/tex]: all real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
- Range:
- [tex]\( f(x) \)[/tex]: all non-negative real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
### Conclusion
Based on the domain and range analysis, the accurate statements comparing the domain and range of the functions are:
1. The range of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the range of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is incorrect as [tex]\( f(x) \)[/tex] does not have a range of all real numbers but rather all non-negative real numbers.
2. The domain of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is correct.
### Function [tex]\( f(x) = 3x^2 \)[/tex]
1. Domain: The function [tex]\( f(x) = 3x^2 \)[/tex] is a polynomial, which means it is defined for all real numbers. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( f(x) = 3x^2 \)[/tex] is a quadratic function that opens upwards (as the coefficient of [tex]\( x^2 \)[/tex] is positive), the minimum value of [tex]\( f(x) \)[/tex] is 0 (when [tex]\( x = 0 \)[/tex]). Thus, the range of [tex]\( f(x) \)[/tex] is all non-negative real numbers (i.e., [tex]\( [0, \infty) \)[/tex]).
### Function [tex]\( g(x) = \frac{1}{3x} \)[/tex]
1. Domain: The function [tex]\( g(x) = \frac{1}{3x} \)[/tex] involves division by [tex]\( x \)[/tex]. Division by zero is undefined, so [tex]\( x \)[/tex] cannot be 0. Therefore, the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0.
2. Range: Since [tex]\( g(x) = \frac{1}{3x} \)[/tex] can never be 0 (it approaches infinity or negative infinity as [tex]\( x \)[/tex] gets close to 0, and it takes all positive and negative real values), the range of [tex]\( g(x) \)[/tex] is all real numbers except 0.
### Function [tex]\( h(x) = 3x \)[/tex]
1. Domain: The function [tex]\( h(x) = 3x \)[/tex] is a linear function, which means it is defined for all real numbers. Therefore, the domain of [tex]\( h(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( h(x) = 3x \)[/tex] is a linear function that can take any real value (as [tex]\( x \)[/tex] can be any real number), the range of [tex]\( h(x) \)[/tex] is all real numbers.
### Summary of Domain and Range
- Domain:
- [tex]\( f(x) \)[/tex]: all real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
- Range:
- [tex]\( f(x) \)[/tex]: all non-negative real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
### Conclusion
Based on the domain and range analysis, the accurate statements comparing the domain and range of the functions are:
1. The range of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the range of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is incorrect as [tex]\( f(x) \)[/tex] does not have a range of all real numbers but rather all non-negative real numbers.
2. The domain of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is correct.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.