Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To accurately compare the domain and range of the functions [tex]\( f(x) = 3x^2 \)[/tex], [tex]\( g(x) = \frac{1}{3x} \)[/tex], and [tex]\( h(x) = 3x \)[/tex], we need to analyze each function individually.
### Function [tex]\( f(x) = 3x^2 \)[/tex]
1. Domain: The function [tex]\( f(x) = 3x^2 \)[/tex] is a polynomial, which means it is defined for all real numbers. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( f(x) = 3x^2 \)[/tex] is a quadratic function that opens upwards (as the coefficient of [tex]\( x^2 \)[/tex] is positive), the minimum value of [tex]\( f(x) \)[/tex] is 0 (when [tex]\( x = 0 \)[/tex]). Thus, the range of [tex]\( f(x) \)[/tex] is all non-negative real numbers (i.e., [tex]\( [0, \infty) \)[/tex]).
### Function [tex]\( g(x) = \frac{1}{3x} \)[/tex]
1. Domain: The function [tex]\( g(x) = \frac{1}{3x} \)[/tex] involves division by [tex]\( x \)[/tex]. Division by zero is undefined, so [tex]\( x \)[/tex] cannot be 0. Therefore, the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0.
2. Range: Since [tex]\( g(x) = \frac{1}{3x} \)[/tex] can never be 0 (it approaches infinity or negative infinity as [tex]\( x \)[/tex] gets close to 0, and it takes all positive and negative real values), the range of [tex]\( g(x) \)[/tex] is all real numbers except 0.
### Function [tex]\( h(x) = 3x \)[/tex]
1. Domain: The function [tex]\( h(x) = 3x \)[/tex] is a linear function, which means it is defined for all real numbers. Therefore, the domain of [tex]\( h(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( h(x) = 3x \)[/tex] is a linear function that can take any real value (as [tex]\( x \)[/tex] can be any real number), the range of [tex]\( h(x) \)[/tex] is all real numbers.
### Summary of Domain and Range
- Domain:
- [tex]\( f(x) \)[/tex]: all real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
- Range:
- [tex]\( f(x) \)[/tex]: all non-negative real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
### Conclusion
Based on the domain and range analysis, the accurate statements comparing the domain and range of the functions are:
1. The range of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the range of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is incorrect as [tex]\( f(x) \)[/tex] does not have a range of all real numbers but rather all non-negative real numbers.
2. The domain of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is correct.
### Function [tex]\( f(x) = 3x^2 \)[/tex]
1. Domain: The function [tex]\( f(x) = 3x^2 \)[/tex] is a polynomial, which means it is defined for all real numbers. Therefore, the domain of [tex]\( f(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( f(x) = 3x^2 \)[/tex] is a quadratic function that opens upwards (as the coefficient of [tex]\( x^2 \)[/tex] is positive), the minimum value of [tex]\( f(x) \)[/tex] is 0 (when [tex]\( x = 0 \)[/tex]). Thus, the range of [tex]\( f(x) \)[/tex] is all non-negative real numbers (i.e., [tex]\( [0, \infty) \)[/tex]).
### Function [tex]\( g(x) = \frac{1}{3x} \)[/tex]
1. Domain: The function [tex]\( g(x) = \frac{1}{3x} \)[/tex] involves division by [tex]\( x \)[/tex]. Division by zero is undefined, so [tex]\( x \)[/tex] cannot be 0. Therefore, the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0.
2. Range: Since [tex]\( g(x) = \frac{1}{3x} \)[/tex] can never be 0 (it approaches infinity or negative infinity as [tex]\( x \)[/tex] gets close to 0, and it takes all positive and negative real values), the range of [tex]\( g(x) \)[/tex] is all real numbers except 0.
### Function [tex]\( h(x) = 3x \)[/tex]
1. Domain: The function [tex]\( h(x) = 3x \)[/tex] is a linear function, which means it is defined for all real numbers. Therefore, the domain of [tex]\( h(x) \)[/tex] is all real numbers.
2. Range: Since [tex]\( h(x) = 3x \)[/tex] is a linear function that can take any real value (as [tex]\( x \)[/tex] can be any real number), the range of [tex]\( h(x) \)[/tex] is all real numbers.
### Summary of Domain and Range
- Domain:
- [tex]\( f(x) \)[/tex]: all real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
- Range:
- [tex]\( f(x) \)[/tex]: all non-negative real numbers
- [tex]\( g(x) \)[/tex]: all real numbers except 0
- [tex]\( h(x) \)[/tex]: all real numbers
### Conclusion
Based on the domain and range analysis, the accurate statements comparing the domain and range of the functions are:
1. The range of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the range of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is incorrect as [tex]\( f(x) \)[/tex] does not have a range of all real numbers but rather all non-negative real numbers.
2. The domain of [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] is all real numbers, but the domain of [tex]\( g(x) \)[/tex] is all real numbers except 0. This statement is correct.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.