Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's find the product of the two given rational expressions and simplify it step-by-step:
1. Write the given expressions:
[tex]\[ \frac{4k+2}{k^2-4} \cdot \frac{k-2}{2k+1} \][/tex]
2. Factor the denominators to simplify them:
Note that [tex]\(k^2 - 4\)[/tex] is a difference of squares and can be factored as:
[tex]\[ k^2 - 4 = (k-2)(k+2) \][/tex]
So the expression becomes:
[tex]\[ \frac{4k+2}{(k-2)(k+2)} \cdot \frac{k-2}{2k+1} \][/tex]
3. Combine the two fractions by multiplying the numerators and denominators:
[tex]\[ \frac{(4k+2)(k-2)}{(k-2)(k+2)(2k+1)} \][/tex]
4. Cancel out the common factors:
Notice that [tex]\((k-2)\)[/tex] appears both in the numerator and the denominator:
[tex]\[ \frac{4k+2}{(k+2)(2k+1)} \][/tex]
5. Factor the numerator to simplify further:
Factor [tex]\(4k+2\)[/tex]:
[tex]\[ 4k + 2 = 2(2k + 1) \][/tex]
6. Substitute back into the fraction:
[tex]\[ \frac{2(2k+1)}{(k+2)(2k+1)} \][/tex]
7. Cancel out the common factors again:
Notice that [tex]\((2k+1)\)[/tex] appears in both the numerator and the denominator:
[tex]\[ \frac{2}{k+2} \][/tex]
Thus, the simplified form of the product [tex]\(\frac{4 k+2}{k^2-4} \cdot \frac{k-2}{2 k+1}\)[/tex] is [tex]\(\boxed{\frac{2}{k+2}}\)[/tex].
1. Write the given expressions:
[tex]\[ \frac{4k+2}{k^2-4} \cdot \frac{k-2}{2k+1} \][/tex]
2. Factor the denominators to simplify them:
Note that [tex]\(k^2 - 4\)[/tex] is a difference of squares and can be factored as:
[tex]\[ k^2 - 4 = (k-2)(k+2) \][/tex]
So the expression becomes:
[tex]\[ \frac{4k+2}{(k-2)(k+2)} \cdot \frac{k-2}{2k+1} \][/tex]
3. Combine the two fractions by multiplying the numerators and denominators:
[tex]\[ \frac{(4k+2)(k-2)}{(k-2)(k+2)(2k+1)} \][/tex]
4. Cancel out the common factors:
Notice that [tex]\((k-2)\)[/tex] appears both in the numerator and the denominator:
[tex]\[ \frac{4k+2}{(k+2)(2k+1)} \][/tex]
5. Factor the numerator to simplify further:
Factor [tex]\(4k+2\)[/tex]:
[tex]\[ 4k + 2 = 2(2k + 1) \][/tex]
6. Substitute back into the fraction:
[tex]\[ \frac{2(2k+1)}{(k+2)(2k+1)} \][/tex]
7. Cancel out the common factors again:
Notice that [tex]\((2k+1)\)[/tex] appears in both the numerator and the denominator:
[tex]\[ \frac{2}{k+2} \][/tex]
Thus, the simplified form of the product [tex]\(\frac{4 k+2}{k^2-4} \cdot \frac{k-2}{2 k+1}\)[/tex] is [tex]\(\boxed{\frac{2}{k+2}}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.