Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
### Question 1: Testing [tex]\( H_0: p = 0.5 \)[/tex] against [tex]\( H_a: p > 0.5 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.5 \)[/tex]
- Significance level [tex]\( \alpha = 0.01 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.01 \)[/tex] is 2.33
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.5}{\sqrt{\frac{0.5 \times 0.5}{120}}} = 5.696 \][/tex]
So,
test statistic [tex]\( z = 5.696 \)[/tex].
Since [tex]\( z = 5.696 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 2.33, we reject the null hypothesis.
Conclusion:
A. We can reject the null hypothesis that [tex]\( p = 0.5 \)[/tex] and accept that [tex]\( p > 0.5 \)[/tex].
### Question 2: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.05 \)[/tex] is -1.645
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.55}{\sqrt{\frac{0.55 \times 0.45}{120}}} = 4.624 \][/tex]
So,
test statistic [tex]\( z = 4.624 \)[/tex].
Since [tex]\( z = 4.624 \)[/tex] is not lesser than the critical [tex]\( z \)[/tex] score of -1.645, we do not reject the null hypothesis.
Conclusion:
A. There is not sufficient evidence to reject the null hypothesis that [tex]\( p = 0.55 \)[/tex].
### Question 3: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p \neq 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for two-tailed test with [tex]\( \alpha = 0.05 \)[/tex] is 1.96
Since we already calculated the test statistic for [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex], which is:
[tex]\[ z = 4.624 \][/tex]
The test statistic [tex]\( z = 4.624 \)[/tex] remains the same.
Since [tex]\( |z| = 4.624 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 1.96, we reject the null hypothesis.
Conclusion:
B. We can reject the null hypothesis that [tex]\( p = 0.55 \)[/tex] and accept that [tex]\( p \neq 0.55 \)[/tex].
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.5 \)[/tex]
- Significance level [tex]\( \alpha = 0.01 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.01 \)[/tex] is 2.33
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.5}{\sqrt{\frac{0.5 \times 0.5}{120}}} = 5.696 \][/tex]
So,
test statistic [tex]\( z = 5.696 \)[/tex].
Since [tex]\( z = 5.696 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 2.33, we reject the null hypothesis.
Conclusion:
A. We can reject the null hypothesis that [tex]\( p = 0.5 \)[/tex] and accept that [tex]\( p > 0.5 \)[/tex].
### Question 2: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.05 \)[/tex] is -1.645
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.55}{\sqrt{\frac{0.55 \times 0.45}{120}}} = 4.624 \][/tex]
So,
test statistic [tex]\( z = 4.624 \)[/tex].
Since [tex]\( z = 4.624 \)[/tex] is not lesser than the critical [tex]\( z \)[/tex] score of -1.645, we do not reject the null hypothesis.
Conclusion:
A. There is not sufficient evidence to reject the null hypothesis that [tex]\( p = 0.55 \)[/tex].
### Question 3: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p \neq 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for two-tailed test with [tex]\( \alpha = 0.05 \)[/tex] is 1.96
Since we already calculated the test statistic for [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex], which is:
[tex]\[ z = 4.624 \][/tex]
The test statistic [tex]\( z = 4.624 \)[/tex] remains the same.
Since [tex]\( |z| = 4.624 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 1.96, we reject the null hypothesis.
Conclusion:
B. We can reject the null hypothesis that [tex]\( p = 0.55 \)[/tex] and accept that [tex]\( p \neq 0.55 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.