Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
### Question 1: Testing [tex]\( H_0: p = 0.5 \)[/tex] against [tex]\( H_a: p > 0.5 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.5 \)[/tex]
- Significance level [tex]\( \alpha = 0.01 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.01 \)[/tex] is 2.33
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.5}{\sqrt{\frac{0.5 \times 0.5}{120}}} = 5.696 \][/tex]
So,
test statistic [tex]\( z = 5.696 \)[/tex].
Since [tex]\( z = 5.696 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 2.33, we reject the null hypothesis.
Conclusion:
A. We can reject the null hypothesis that [tex]\( p = 0.5 \)[/tex] and accept that [tex]\( p > 0.5 \)[/tex].
### Question 2: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.05 \)[/tex] is -1.645
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.55}{\sqrt{\frac{0.55 \times 0.45}{120}}} = 4.624 \][/tex]
So,
test statistic [tex]\( z = 4.624 \)[/tex].
Since [tex]\( z = 4.624 \)[/tex] is not lesser than the critical [tex]\( z \)[/tex] score of -1.645, we do not reject the null hypothesis.
Conclusion:
A. There is not sufficient evidence to reject the null hypothesis that [tex]\( p = 0.55 \)[/tex].
### Question 3: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p \neq 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for two-tailed test with [tex]\( \alpha = 0.05 \)[/tex] is 1.96
Since we already calculated the test statistic for [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex], which is:
[tex]\[ z = 4.624 \][/tex]
The test statistic [tex]\( z = 4.624 \)[/tex] remains the same.
Since [tex]\( |z| = 4.624 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 1.96, we reject the null hypothesis.
Conclusion:
B. We can reject the null hypothesis that [tex]\( p = 0.55 \)[/tex] and accept that [tex]\( p \neq 0.55 \)[/tex].
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.5 \)[/tex]
- Significance level [tex]\( \alpha = 0.01 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.01 \)[/tex] is 2.33
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.5}{\sqrt{\frac{0.5 \times 0.5}{120}}} = 5.696 \][/tex]
So,
test statistic [tex]\( z = 5.696 \)[/tex].
Since [tex]\( z = 5.696 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 2.33, we reject the null hypothesis.
Conclusion:
A. We can reject the null hypothesis that [tex]\( p = 0.5 \)[/tex] and accept that [tex]\( p > 0.5 \)[/tex].
### Question 2: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for [tex]\( \alpha = 0.05 \)[/tex] is -1.645
The test statistic [tex]\( z \)[/tex] is calculated using the formula:
[tex]\[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{0.76 - 0.55}{\sqrt{\frac{0.55 \times 0.45}{120}}} = 4.624 \][/tex]
So,
test statistic [tex]\( z = 4.624 \)[/tex].
Since [tex]\( z = 4.624 \)[/tex] is not lesser than the critical [tex]\( z \)[/tex] score of -1.645, we do not reject the null hypothesis.
Conclusion:
A. There is not sufficient evidence to reject the null hypothesis that [tex]\( p = 0.55 \)[/tex].
### Question 3: Testing [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p \neq 0.55 \)[/tex]
Given:
- Sample size [tex]\( n = 120 \)[/tex]
- Sample proportion [tex]\( \hat{p} = 0.76 \)[/tex]
- Null hypothesis proportion [tex]\( p_0 = 0.55 \)[/tex]
- Significance level [tex]\( \alpha = 0.05 \)[/tex]
- Critical [tex]\( z \)[/tex] score for two-tailed test with [tex]\( \alpha = 0.05 \)[/tex] is 1.96
Since we already calculated the test statistic for [tex]\( H_0: p = 0.55 \)[/tex] against [tex]\( H_a: p < 0.55 \)[/tex], which is:
[tex]\[ z = 4.624 \][/tex]
The test statistic [tex]\( z = 4.624 \)[/tex] remains the same.
Since [tex]\( |z| = 4.624 \)[/tex] is greater than the critical [tex]\( z \)[/tex] score of 1.96, we reject the null hypothesis.
Conclusion:
B. We can reject the null hypothesis that [tex]\( p = 0.55 \)[/tex] and accept that [tex]\( p \neq 0.55 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.