Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's factor the polynomial [tex]\( x^6 - 25 \)[/tex] step-by-step:
1. Identify the polynomial: We start with the polynomial [tex]\( x^6 - 25 \)[/tex].
2. Recognize the difference of squares: Notice that [tex]\( x^6 - 25 \)[/tex] can be seen as a difference of squares. Recall that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex]. In our case:
[tex]\[ x^6 - 25 = (x^3)^2 - 5^2 \][/tex]
Here, [tex]\( a = x^3 \)[/tex] and [tex]\( b = 5 \)[/tex].
3. Apply the difference of squares formula: Using the formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex] with [tex]\( a = x^3 \)[/tex] and [tex]\( b = 5 \)[/tex]:
[tex]\[ (x^3)^2 - 5^2 = (x^3 - 5)(x^3 + 5) \][/tex]
4. Result: Therefore, the polynomial [tex]\( x^6 - 25 \)[/tex] factors as:
[tex]\[ x^6 - 25 = (x^3 - 5)(x^3 + 5) \][/tex]
So, the factorization of the polynomial [tex]\( x^6 - 25 \)[/tex] is:
[tex]\[ (x^3 - 5)(x^3 + 5) \][/tex]
This gives us the factored form of the initial polynomial.
1. Identify the polynomial: We start with the polynomial [tex]\( x^6 - 25 \)[/tex].
2. Recognize the difference of squares: Notice that [tex]\( x^6 - 25 \)[/tex] can be seen as a difference of squares. Recall that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex]. In our case:
[tex]\[ x^6 - 25 = (x^3)^2 - 5^2 \][/tex]
Here, [tex]\( a = x^3 \)[/tex] and [tex]\( b = 5 \)[/tex].
3. Apply the difference of squares formula: Using the formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex] with [tex]\( a = x^3 \)[/tex] and [tex]\( b = 5 \)[/tex]:
[tex]\[ (x^3)^2 - 5^2 = (x^3 - 5)(x^3 + 5) \][/tex]
4. Result: Therefore, the polynomial [tex]\( x^6 - 25 \)[/tex] factors as:
[tex]\[ x^6 - 25 = (x^3 - 5)(x^3 + 5) \][/tex]
So, the factorization of the polynomial [tex]\( x^6 - 25 \)[/tex] is:
[tex]\[ (x^3 - 5)(x^3 + 5) \][/tex]
This gives us the factored form of the initial polynomial.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.