Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the range of possible values for the third side of an acute triangle with the given sides measuring 10 cm and 16 cm, we need to use the triangle inequality theorem. The triangle inequality theorem states that for any triangle with sides [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
1. [tex]\(a + b > c\)[/tex]
2. [tex]\(a + c > b\)[/tex]
3. [tex]\(b + c > a\)[/tex]
Let's denote the unknown side by [tex]\(x\)[/tex]. We will now apply the triangle inequality theorem:
1. [tex]\(10 + 16 > x\)[/tex]
[tex]\[ 26 > x \][/tex]
[tex]\[ x < 26 \][/tex]
2. [tex]\(10 + x > 16\)[/tex]
[tex]\[ x > 16 - 10 \][/tex]
[tex]\[ x > 6 \][/tex]
3. [tex]\(16 + x > 10\)[/tex]
[tex]\[ x > 10 - 16 \][/tex]
This inequality is also covered by [tex]\(x > 6\)[/tex].
Taking all these inequalities together, the range of possible values for [tex]\(x\)[/tex] is:
[tex]\[ 6 < x < 26 \][/tex]
Therefore, the best description of the range of possible values for the third side [tex]\(x\)[/tex] of the triangle is:
[tex]\[ \boxed{6 < x < 26} \][/tex]
1. [tex]\(a + b > c\)[/tex]
2. [tex]\(a + c > b\)[/tex]
3. [tex]\(b + c > a\)[/tex]
Let's denote the unknown side by [tex]\(x\)[/tex]. We will now apply the triangle inequality theorem:
1. [tex]\(10 + 16 > x\)[/tex]
[tex]\[ 26 > x \][/tex]
[tex]\[ x < 26 \][/tex]
2. [tex]\(10 + x > 16\)[/tex]
[tex]\[ x > 16 - 10 \][/tex]
[tex]\[ x > 6 \][/tex]
3. [tex]\(16 + x > 10\)[/tex]
[tex]\[ x > 10 - 16 \][/tex]
This inequality is also covered by [tex]\(x > 6\)[/tex].
Taking all these inequalities together, the range of possible values for [tex]\(x\)[/tex] is:
[tex]\[ 6 < x < 26 \][/tex]
Therefore, the best description of the range of possible values for the third side [tex]\(x\)[/tex] of the triangle is:
[tex]\[ \boxed{6 < x < 26} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.