Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which statement is logically equivalent to a given conditional statement [tex]\( p \rightarrow q \)[/tex], we need to consider a few key concepts in logic: the contrapositive, the inverse, and the converse of a conditional statement.
1. Original Statement: [tex]\( p \rightarrow q \)[/tex]
- This translates to: "If [tex]\( p \)[/tex] is true, then [tex]\( q \)[/tex] is true".
2. Contrapositive: [tex]\( \sim q \rightarrow \sim p \)[/tex]
- This translates to: "If [tex]\( q \)[/tex] is not true, then [tex]\( p \)[/tex] is not true".
- A fundamental property in logic is that the contrapositive of a conditional statement is always logically equivalent to the original conditional statement.
3. Inverse: [tex]\( \sim p \rightarrow \sim q \)[/tex]
- This translates to: "If [tex]\( p \)[/tex] is not true, then [tex]\( q \)[/tex] is not true".
- The inverse is not logically equivalent to the original statement.
4. Converse: [tex]\( q \rightarrow p \)[/tex]
- This translates to: "If [tex]\( q \)[/tex] is true, then [tex]\( p \)[/tex] is true".
- The converse is not logically equivalent to the original statement either.
5. Other Option: [tex]\( p \rightarrow \sim q \)[/tex]
- This translates to: "If [tex]\( p \)[/tex] is true, then [tex]\( q \)[/tex] is not true".
- This statement changes the relationship between [tex]\( p \)[/tex] and [tex]\( q \)[/tex] and is not logically equivalent to the original statement.
Given these concepts, the statement that is logically equivalent to [tex]\( p \rightarrow q \)[/tex] is the contrapositive: [tex]\( \sim q \rightarrow \sim p \)[/tex].
Therefore, the correct choice is:
[tex]\[ \sim q \rightarrow \sim p \][/tex]
This corresponds to the second option from the given choices:
[tex]\[ \boxed{\sim q \rightarrow \sim p} \][/tex]
1. Original Statement: [tex]\( p \rightarrow q \)[/tex]
- This translates to: "If [tex]\( p \)[/tex] is true, then [tex]\( q \)[/tex] is true".
2. Contrapositive: [tex]\( \sim q \rightarrow \sim p \)[/tex]
- This translates to: "If [tex]\( q \)[/tex] is not true, then [tex]\( p \)[/tex] is not true".
- A fundamental property in logic is that the contrapositive of a conditional statement is always logically equivalent to the original conditional statement.
3. Inverse: [tex]\( \sim p \rightarrow \sim q \)[/tex]
- This translates to: "If [tex]\( p \)[/tex] is not true, then [tex]\( q \)[/tex] is not true".
- The inverse is not logically equivalent to the original statement.
4. Converse: [tex]\( q \rightarrow p \)[/tex]
- This translates to: "If [tex]\( q \)[/tex] is true, then [tex]\( p \)[/tex] is true".
- The converse is not logically equivalent to the original statement either.
5. Other Option: [tex]\( p \rightarrow \sim q \)[/tex]
- This translates to: "If [tex]\( p \)[/tex] is true, then [tex]\( q \)[/tex] is not true".
- This statement changes the relationship between [tex]\( p \)[/tex] and [tex]\( q \)[/tex] and is not logically equivalent to the original statement.
Given these concepts, the statement that is logically equivalent to [tex]\( p \rightarrow q \)[/tex] is the contrapositive: [tex]\( \sim q \rightarrow \sim p \)[/tex].
Therefore, the correct choice is:
[tex]\[ \sim q \rightarrow \sim p \][/tex]
This corresponds to the second option from the given choices:
[tex]\[ \boxed{\sim q \rightarrow \sim p} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.