Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for [tex]\(i^3\)[/tex] using the properties of imaginary numbers and exponents, follow these steps:
1. Understanding [tex]\(i\)[/tex] and its powers:
- Recall that [tex]\(i\)[/tex] is the imaginary unit, defined by [tex]\(i^2 = -1\)[/tex].
2. Calculate [tex]\(i^2\)[/tex]:
- By definition, [tex]\(i^2 = -1\)[/tex].
3. Exponentiation Law:
- Use the property of exponents: [tex]\(i^3 = (i^2) \cdot i\)[/tex].
4. Calculate [tex]\(i^3\)[/tex]:
- Substitute [tex]\(i^2 = -1\)[/tex] into the expression for [tex]\(i^3\)[/tex]:
[tex]\[ i^3 = (i^2) \cdot i = (-1) \cdot i = -i \][/tex]
5. Imaginary Number Form:
- Writing in the form of complex numbers, where the real part is 0:
[tex]\[ -i = 0 - 1i \][/tex]
So, the calculations give us:
- [tex]\(i^2\)[/tex] is [tex]\(-1\)[/tex]
- [tex]\(i^3\)[/tex] is [tex]\(-i\)[/tex] or represented as [tex]\(0 - 1i\)[/tex].
Thus, we have:
[tex]\[ i^2 = -1 + 0j \][/tex]
[tex]\[ i^3 = -0 - 1j \][/tex]
These results match our understanding of the powers of the imaginary unit [tex]\(i\)[/tex].
1. Understanding [tex]\(i\)[/tex] and its powers:
- Recall that [tex]\(i\)[/tex] is the imaginary unit, defined by [tex]\(i^2 = -1\)[/tex].
2. Calculate [tex]\(i^2\)[/tex]:
- By definition, [tex]\(i^2 = -1\)[/tex].
3. Exponentiation Law:
- Use the property of exponents: [tex]\(i^3 = (i^2) \cdot i\)[/tex].
4. Calculate [tex]\(i^3\)[/tex]:
- Substitute [tex]\(i^2 = -1\)[/tex] into the expression for [tex]\(i^3\)[/tex]:
[tex]\[ i^3 = (i^2) \cdot i = (-1) \cdot i = -i \][/tex]
5. Imaginary Number Form:
- Writing in the form of complex numbers, where the real part is 0:
[tex]\[ -i = 0 - 1i \][/tex]
So, the calculations give us:
- [tex]\(i^2\)[/tex] is [tex]\(-1\)[/tex]
- [tex]\(i^3\)[/tex] is [tex]\(-i\)[/tex] or represented as [tex]\(0 - 1i\)[/tex].
Thus, we have:
[tex]\[ i^2 = -1 + 0j \][/tex]
[tex]\[ i^3 = -0 - 1j \][/tex]
These results match our understanding of the powers of the imaginary unit [tex]\(i\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.