Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Using the laws of exponents,

[tex]\[ i^3 = (i^2) \cdot i \][/tex]

Complete the expression.


Sagot :

To solve for [tex]\(i^3\)[/tex] using the properties of imaginary numbers and exponents, follow these steps:

1. Understanding [tex]\(i\)[/tex] and its powers:
- Recall that [tex]\(i\)[/tex] is the imaginary unit, defined by [tex]\(i^2 = -1\)[/tex].

2. Calculate [tex]\(i^2\)[/tex]:
- By definition, [tex]\(i^2 = -1\)[/tex].

3. Exponentiation Law:
- Use the property of exponents: [tex]\(i^3 = (i^2) \cdot i\)[/tex].

4. Calculate [tex]\(i^3\)[/tex]:
- Substitute [tex]\(i^2 = -1\)[/tex] into the expression for [tex]\(i^3\)[/tex]:
[tex]\[ i^3 = (i^2) \cdot i = (-1) \cdot i = -i \][/tex]

5. Imaginary Number Form:
- Writing in the form of complex numbers, where the real part is 0:
[tex]\[ -i = 0 - 1i \][/tex]

So, the calculations give us:
- [tex]\(i^2\)[/tex] is [tex]\(-1\)[/tex]
- [tex]\(i^3\)[/tex] is [tex]\(-i\)[/tex] or represented as [tex]\(0 - 1i\)[/tex].

Thus, we have:
[tex]\[ i^2 = -1 + 0j \][/tex]
[tex]\[ i^3 = -0 - 1j \][/tex]

These results match our understanding of the powers of the imaginary unit [tex]\(i\)[/tex].