Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\(\cot \left(4 x - \frac{\pi}{6}\right) = \sqrt{3}\)[/tex], let's follow these steps:
1. Recognize the trigonometric identity involving [tex]\(\cot\)[/tex]:
Recall that [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex]. Given [tex]\(\cot \theta = \sqrt{3}\)[/tex], we know:
[tex]\[ \tan \theta = \frac{1}{\sqrt{3}} \][/tex]
2. Determine the specific angles:
From trigonometric tables or the unit circle, we know:
[tex]\[ \tan \left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \][/tex]
Since [tex]\(\theta = \frac{\pi}{6}\)[/tex] and the tangent function is periodic with period [tex]\(\pi\)[/tex], the general solution for [tex]\(\theta\)[/tex] when [tex]\(\tan \theta = \frac{1}{\sqrt{3}}\)[/tex] is:
[tex]\[ \theta = \frac{\pi}{6} + k\pi \quad \text{for any integer } k \][/tex]
3. Relate [tex]\(\theta\)[/tex] to our specific equation:
Here, [tex]\(\theta = 4 x - \frac{\pi}{6}\)[/tex]. Thus, we set up the equation:
[tex]\[ 4 x - \frac{\pi}{6} = \frac{\pi}{6} + k\pi \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Isolate [tex]\(x\)[/tex] in the equation:
[tex]\[ 4 x - \frac{\pi}{6} = \frac{\pi}{6} + k\pi \][/tex]
Add [tex]\(\frac{\pi}{6}\)[/tex] to both sides:
[tex]\[ 4 x = \frac{\pi}{6} + \frac{\pi}{6} + k\pi \][/tex]
[tex]\[ 4 x = \frac{2\pi}{6} + k\pi \][/tex]
[tex]\[ 4 x = \frac{\pi}{3} + k\pi \][/tex]
Finally, divide by 4:
[tex]\[ x = \frac{\pi}{12} + \frac{k\pi}{4} \][/tex]
5. Specific Solution:
For [tex]\(k = -1\)[/tex], we have:
[tex]\[ x = \frac{\pi}{12} - \frac{\pi}{4} = \frac{\pi}{12} - \frac{3\pi}{12} = -\frac{2\pi}{12} = -\frac{\pi}{6} \][/tex]
So, the solution for the equation [tex]\(\cot \left(4 x - \frac{\pi}{6}\right) = \sqrt{3}\)[/tex] is:
[tex]\[ x = -\frac{\pi}{6} \][/tex]
In numerical form,
[tex]\[ x \approx -0.5236 \][/tex]
Thus, the exact solution is [tex]\(x = -\frac{\pi}{6}\)[/tex], and the approximate numerical solution is [tex]\(-0.5236\)[/tex].
1. Recognize the trigonometric identity involving [tex]\(\cot\)[/tex]:
Recall that [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex]. Given [tex]\(\cot \theta = \sqrt{3}\)[/tex], we know:
[tex]\[ \tan \theta = \frac{1}{\sqrt{3}} \][/tex]
2. Determine the specific angles:
From trigonometric tables or the unit circle, we know:
[tex]\[ \tan \left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \][/tex]
Since [tex]\(\theta = \frac{\pi}{6}\)[/tex] and the tangent function is periodic with period [tex]\(\pi\)[/tex], the general solution for [tex]\(\theta\)[/tex] when [tex]\(\tan \theta = \frac{1}{\sqrt{3}}\)[/tex] is:
[tex]\[ \theta = \frac{\pi}{6} + k\pi \quad \text{for any integer } k \][/tex]
3. Relate [tex]\(\theta\)[/tex] to our specific equation:
Here, [tex]\(\theta = 4 x - \frac{\pi}{6}\)[/tex]. Thus, we set up the equation:
[tex]\[ 4 x - \frac{\pi}{6} = \frac{\pi}{6} + k\pi \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Isolate [tex]\(x\)[/tex] in the equation:
[tex]\[ 4 x - \frac{\pi}{6} = \frac{\pi}{6} + k\pi \][/tex]
Add [tex]\(\frac{\pi}{6}\)[/tex] to both sides:
[tex]\[ 4 x = \frac{\pi}{6} + \frac{\pi}{6} + k\pi \][/tex]
[tex]\[ 4 x = \frac{2\pi}{6} + k\pi \][/tex]
[tex]\[ 4 x = \frac{\pi}{3} + k\pi \][/tex]
Finally, divide by 4:
[tex]\[ x = \frac{\pi}{12} + \frac{k\pi}{4} \][/tex]
5. Specific Solution:
For [tex]\(k = -1\)[/tex], we have:
[tex]\[ x = \frac{\pi}{12} - \frac{\pi}{4} = \frac{\pi}{12} - \frac{3\pi}{12} = -\frac{2\pi}{12} = -\frac{\pi}{6} \][/tex]
So, the solution for the equation [tex]\(\cot \left(4 x - \frac{\pi}{6}\right) = \sqrt{3}\)[/tex] is:
[tex]\[ x = -\frac{\pi}{6} \][/tex]
In numerical form,
[tex]\[ x \approx -0.5236 \][/tex]
Thus, the exact solution is [tex]\(x = -\frac{\pi}{6}\)[/tex], and the approximate numerical solution is [tex]\(-0.5236\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.