Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To form a compound inequality using the given conditions [tex]\( t > 6 \)[/tex] and [tex]\( t \leqslant 9 \)[/tex], you need to combine both inequalities into a single statement that accurately represents the solution set.
Here's a step-by-step solution:
1. Identify the individual inequalities:
- The first inequality is [tex]\( t > 6 \)[/tex], which means that [tex]\( t \)[/tex] must be greater than 6.
- The second inequality is [tex]\( t \leqslant 9 \)[/tex], which means that [tex]\( t \)[/tex] must be less than or equal to 9.
2. Combine the inequalities:
- To form a compound inequality, you need to express both conditions simultaneously.
- You can do this by combining the two inequalities with the word "and" since both conditions must be true at the same time.
- Therefore, the compound inequality is written as:
[tex]\[ t > 6 \quad \text{and} \quad t \leqslant 9 \][/tex]
3. Interpret the result:
- The compound inequality [tex]\( t > 6 \)[/tex] and [tex]\( t \leqslant 9 \)[/tex] represents all values of [tex]\( t \)[/tex] that are strictly greater than 6 and simultaneously less than or equal to 9.
- This can also be expressed in the interval notation as: [tex]\( (6, 9] \)[/tex].
Therefore, the compound inequality is:
[tex]\[ t > 6 \quad \text{and} \quad t \leqslant 9 \][/tex]
Here's a step-by-step solution:
1. Identify the individual inequalities:
- The first inequality is [tex]\( t > 6 \)[/tex], which means that [tex]\( t \)[/tex] must be greater than 6.
- The second inequality is [tex]\( t \leqslant 9 \)[/tex], which means that [tex]\( t \)[/tex] must be less than or equal to 9.
2. Combine the inequalities:
- To form a compound inequality, you need to express both conditions simultaneously.
- You can do this by combining the two inequalities with the word "and" since both conditions must be true at the same time.
- Therefore, the compound inequality is written as:
[tex]\[ t > 6 \quad \text{and} \quad t \leqslant 9 \][/tex]
3. Interpret the result:
- The compound inequality [tex]\( t > 6 \)[/tex] and [tex]\( t \leqslant 9 \)[/tex] represents all values of [tex]\( t \)[/tex] that are strictly greater than 6 and simultaneously less than or equal to 9.
- This can also be expressed in the interval notation as: [tex]\( (6, 9] \)[/tex].
Therefore, the compound inequality is:
[tex]\[ t > 6 \quad \text{and} \quad t \leqslant 9 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.