Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve this problem step by step:
1. Identify the Forces: We have two forces acting on the boat:
- A force of 1800 N directed northward.
- A force of 1050 N directed eastward.
2. Calculate the Magnitude of the Net Force: Since these forces are perpendicular to each other, we can use the Pythagorean theorem to find the resultant force (net force):
[tex]\[ F_{\text{net}} = \sqrt{F_{\text{northward}}^2 + F_{\text{eastward}}^2} \][/tex]
Substituting the given values:
[tex]\[ F_{\text{net}} = \sqrt{1800^2 + 1050^2} \approx 2083.87 \, \text{N} \][/tex]
3. Applying Newton's Second Law: To find the acceleration of the boat, we use Newton's second law of motion, which states:
[tex]\[ F = ma \][/tex]
Rearranging for acceleration [tex]\(a\)[/tex]:
[tex]\[ a = \frac{F_{\text{net}}}{m} \][/tex]
Given that the mass [tex]\(m\)[/tex] of the boat is 2280 kg, we substitute the values:
[tex]\[ a = \frac{2083.87}{2280} \approx 0.914 \, \text{m/s}^2 \][/tex]
So, the magnitude of the acceleration of the boat is approximately [tex]\(0.914 \, \text{m/s}^2\)[/tex].
1. Identify the Forces: We have two forces acting on the boat:
- A force of 1800 N directed northward.
- A force of 1050 N directed eastward.
2. Calculate the Magnitude of the Net Force: Since these forces are perpendicular to each other, we can use the Pythagorean theorem to find the resultant force (net force):
[tex]\[ F_{\text{net}} = \sqrt{F_{\text{northward}}^2 + F_{\text{eastward}}^2} \][/tex]
Substituting the given values:
[tex]\[ F_{\text{net}} = \sqrt{1800^2 + 1050^2} \approx 2083.87 \, \text{N} \][/tex]
3. Applying Newton's Second Law: To find the acceleration of the boat, we use Newton's second law of motion, which states:
[tex]\[ F = ma \][/tex]
Rearranging for acceleration [tex]\(a\)[/tex]:
[tex]\[ a = \frac{F_{\text{net}}}{m} \][/tex]
Given that the mass [tex]\(m\)[/tex] of the boat is 2280 kg, we substitute the values:
[tex]\[ a = \frac{2083.87}{2280} \approx 0.914 \, \text{m/s}^2 \][/tex]
So, the magnitude of the acceleration of the boat is approximately [tex]\(0.914 \, \text{m/s}^2\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.