Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the end behavior of the function [tex]\( f(x) = 80x^2 + 640 - 400x - 5x^3 \)[/tex], we focus on the leading term of the polynomial. The end behavior of a polynomial is determined by the term with the highest degree because it dominates the value of the polynomial as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex].
In this function, the term with the highest degree is [tex]\(-5x^3\)[/tex].
Let's analyze the behavior of this term as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex]:
1. As [tex]\( x \rightarrow \infty \)[/tex]:
\begin{align}
-5x^3 \rightarrow -\infty
\end{align}
As [tex]\( x \)[/tex] becomes very large, [tex]\( x^3 \)[/tex] becomes very large, and since it’s multiplied by a negative coefficient [tex]\(-5\)[/tex], the value of [tex]\(-5x^3\)[/tex] becomes very large and negative. Hence,
[tex]\[ \lim_{x \to \infty} f(x) = -\infty \][/tex]
2. As [tex]\( x \rightarrow -\infty \)[/tex]:
\begin{align}
-5x^3 \rightarrow \infty
\end{align}
As [tex]\( x \)[/tex] becomes very large in the negative direction, [tex]\( (-x)^3 \)[/tex] becomes very large and negative, and since it’s multiplied by a negative coefficient [tex]\(-5\)[/tex], the value of [tex]\(-5(-x)^3\)[/tex] becomes very large and positive. Hence,
[tex]\[ \lim_{x \to -\infty} f(x) = \infty \][/tex]
Therefore, the end behavior of [tex]\( f(x) \)[/tex] is:
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow \infty \)[/tex]
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex]
Thus, the answer is:
[tex]\[ \text{as } x \rightarrow -\infty, f(x) \rightarrow \infty \text{ and as } x \rightarrow \infty, f(x) \rightarrow -\infty. \][/tex]
In this function, the term with the highest degree is [tex]\(-5x^3\)[/tex].
Let's analyze the behavior of this term as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex]:
1. As [tex]\( x \rightarrow \infty \)[/tex]:
\begin{align}
-5x^3 \rightarrow -\infty
\end{align}
As [tex]\( x \)[/tex] becomes very large, [tex]\( x^3 \)[/tex] becomes very large, and since it’s multiplied by a negative coefficient [tex]\(-5\)[/tex], the value of [tex]\(-5x^3\)[/tex] becomes very large and negative. Hence,
[tex]\[ \lim_{x \to \infty} f(x) = -\infty \][/tex]
2. As [tex]\( x \rightarrow -\infty \)[/tex]:
\begin{align}
-5x^3 \rightarrow \infty
\end{align}
As [tex]\( x \)[/tex] becomes very large in the negative direction, [tex]\( (-x)^3 \)[/tex] becomes very large and negative, and since it’s multiplied by a negative coefficient [tex]\(-5\)[/tex], the value of [tex]\(-5(-x)^3\)[/tex] becomes very large and positive. Hence,
[tex]\[ \lim_{x \to -\infty} f(x) = \infty \][/tex]
Therefore, the end behavior of [tex]\( f(x) \)[/tex] is:
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow \infty \)[/tex]
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex]
Thus, the answer is:
[tex]\[ \text{as } x \rightarrow -\infty, f(x) \rightarrow \infty \text{ and as } x \rightarrow \infty, f(x) \rightarrow -\infty. \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.