Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To simplify the expression [tex]\(\sqrt{\frac{72 x^{16}}{50 x^{36}}}\)[/tex], let's break it down step-by-step:
1. Simplify the fraction inside the square root:
[tex]\[ \frac{72 x^{16}}{50 x^{36}} \][/tex]
We can rewrite this as:
[tex]\[ \frac{72}{50} \cdot \frac{x^{16}}{x^{36}} \][/tex]
2. Simplify the constants:
[tex]\[ \frac{72}{50} \][/tex]
Simplify [tex]\(\frac{72}{50}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 2. This gives:
[tex]\[ \frac{72}{50} = \frac{36}{25} \][/tex]
3. Simplify the variable terms:
[tex]\[ \frac{x^{16}}{x^{36}} \][/tex]
Using the properties of exponents, [tex]\(\frac{x^a}{x^b} = x^{a - b}\)[/tex]:
[tex]\[ \frac{x^{16}}{x^{36}} = x^{16 - 36} = x^{-20} \][/tex]
4. Combine the simplified constants and variable terms:
The expression now becomes:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} \][/tex]
5. Distribute the square root:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} = \sqrt{\frac{36}{25}} \cdot \sqrt{x^{-20}} \][/tex]
6. Simplify each square root individually:
[tex]\[ \sqrt{\frac{36}{25}} = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5} \][/tex]
For the variable term:
[tex]\[ \sqrt{x^{-20}} = (x^{-20})^{1/2} = x^{-10} \][/tex]
7. Combine the results:
The simplified form is:
[tex]\[ \frac{6}{5} \cdot x^{-10} = \frac{6}{5x^{10}} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{\frac{72 x^{16}}{50 x^{36}}}\)[/tex] is:
[tex]\[ \frac{6}{5x^{10}} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{6}{5x^{10}}} \][/tex]
1. Simplify the fraction inside the square root:
[tex]\[ \frac{72 x^{16}}{50 x^{36}} \][/tex]
We can rewrite this as:
[tex]\[ \frac{72}{50} \cdot \frac{x^{16}}{x^{36}} \][/tex]
2. Simplify the constants:
[tex]\[ \frac{72}{50} \][/tex]
Simplify [tex]\(\frac{72}{50}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 2. This gives:
[tex]\[ \frac{72}{50} = \frac{36}{25} \][/tex]
3. Simplify the variable terms:
[tex]\[ \frac{x^{16}}{x^{36}} \][/tex]
Using the properties of exponents, [tex]\(\frac{x^a}{x^b} = x^{a - b}\)[/tex]:
[tex]\[ \frac{x^{16}}{x^{36}} = x^{16 - 36} = x^{-20} \][/tex]
4. Combine the simplified constants and variable terms:
The expression now becomes:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} \][/tex]
5. Distribute the square root:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} = \sqrt{\frac{36}{25}} \cdot \sqrt{x^{-20}} \][/tex]
6. Simplify each square root individually:
[tex]\[ \sqrt{\frac{36}{25}} = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5} \][/tex]
For the variable term:
[tex]\[ \sqrt{x^{-20}} = (x^{-20})^{1/2} = x^{-10} \][/tex]
7. Combine the results:
The simplified form is:
[tex]\[ \frac{6}{5} \cdot x^{-10} = \frac{6}{5x^{10}} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{\frac{72 x^{16}}{50 x^{36}}}\)[/tex] is:
[tex]\[ \frac{6}{5x^{10}} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{6}{5x^{10}}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.