Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify the expression [tex]\(\sqrt{\frac{72 x^{16}}{50 x^{36}}}\)[/tex], let's break it down step-by-step:
1. Simplify the fraction inside the square root:
[tex]\[ \frac{72 x^{16}}{50 x^{36}} \][/tex]
We can rewrite this as:
[tex]\[ \frac{72}{50} \cdot \frac{x^{16}}{x^{36}} \][/tex]
2. Simplify the constants:
[tex]\[ \frac{72}{50} \][/tex]
Simplify [tex]\(\frac{72}{50}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 2. This gives:
[tex]\[ \frac{72}{50} = \frac{36}{25} \][/tex]
3. Simplify the variable terms:
[tex]\[ \frac{x^{16}}{x^{36}} \][/tex]
Using the properties of exponents, [tex]\(\frac{x^a}{x^b} = x^{a - b}\)[/tex]:
[tex]\[ \frac{x^{16}}{x^{36}} = x^{16 - 36} = x^{-20} \][/tex]
4. Combine the simplified constants and variable terms:
The expression now becomes:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} \][/tex]
5. Distribute the square root:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} = \sqrt{\frac{36}{25}} \cdot \sqrt{x^{-20}} \][/tex]
6. Simplify each square root individually:
[tex]\[ \sqrt{\frac{36}{25}} = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5} \][/tex]
For the variable term:
[tex]\[ \sqrt{x^{-20}} = (x^{-20})^{1/2} = x^{-10} \][/tex]
7. Combine the results:
The simplified form is:
[tex]\[ \frac{6}{5} \cdot x^{-10} = \frac{6}{5x^{10}} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{\frac{72 x^{16}}{50 x^{36}}}\)[/tex] is:
[tex]\[ \frac{6}{5x^{10}} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{6}{5x^{10}}} \][/tex]
1. Simplify the fraction inside the square root:
[tex]\[ \frac{72 x^{16}}{50 x^{36}} \][/tex]
We can rewrite this as:
[tex]\[ \frac{72}{50} \cdot \frac{x^{16}}{x^{36}} \][/tex]
2. Simplify the constants:
[tex]\[ \frac{72}{50} \][/tex]
Simplify [tex]\(\frac{72}{50}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 2. This gives:
[tex]\[ \frac{72}{50} = \frac{36}{25} \][/tex]
3. Simplify the variable terms:
[tex]\[ \frac{x^{16}}{x^{36}} \][/tex]
Using the properties of exponents, [tex]\(\frac{x^a}{x^b} = x^{a - b}\)[/tex]:
[tex]\[ \frac{x^{16}}{x^{36}} = x^{16 - 36} = x^{-20} \][/tex]
4. Combine the simplified constants and variable terms:
The expression now becomes:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} \][/tex]
5. Distribute the square root:
[tex]\[ \sqrt{\frac{36}{25} \cdot x^{-20}} = \sqrt{\frac{36}{25}} \cdot \sqrt{x^{-20}} \][/tex]
6. Simplify each square root individually:
[tex]\[ \sqrt{\frac{36}{25}} = \frac{\sqrt{36}}{\sqrt{25}} = \frac{6}{5} \][/tex]
For the variable term:
[tex]\[ \sqrt{x^{-20}} = (x^{-20})^{1/2} = x^{-10} \][/tex]
7. Combine the results:
The simplified form is:
[tex]\[ \frac{6}{5} \cdot x^{-10} = \frac{6}{5x^{10}} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{\frac{72 x^{16}}{50 x^{36}}}\)[/tex] is:
[tex]\[ \frac{6}{5x^{10}} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{6}{5x^{10}}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.