At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Fill out the following table and answer questions 1 and 2.

\begin{tabular}{|l|l|l|l|}
\hline & Titration 1 & Titration 2 & Titration 3 \\
\hline \begin{tabular}{c}
Volume of Acid [tex]$\left( V _{ A }\right)$[/tex] \\
(in mL )
\end{tabular} & 20 mL & 20 mL & 20 mL \\
\hline \begin{tabular}{c}
Volume of Base [tex]$\left( V _{ B }\right)$[/tex] \\
(in mL )
\end{tabular} & 0.15 & 0.70 & 18.30 \\
\hline \begin{tabular}{l}
Molarity of Base [tex]$\left( M _{ B }\right)$[/tex]
\end{tabular} & 18.20 & 18.60 & 34.40 \\
\hline
\end{tabular}

1. Calculate the molarity of the [tex]$H_2SO_4$[/tex] solution for each of the three runs.

Sagot :

To calculate the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution for each titration, we can use the equation derived from the neutralization reaction:

[tex]\[ M_A \times V_A = M_B \times V_B \][/tex]

where:
- [tex]\( M_A \)[/tex] is the molarity of the acid [tex]\(\text{H}_2\text{SO}_4\)[/tex] (which we need to find),
- [tex]\( V_A \)[/tex] is the volume of the acid in mL,
- [tex]\( M_B \)[/tex] is the molarity of the base (given in the table),
- [tex]\( V_B \)[/tex] is the volume of the base in mL (given in the table).

To calculate [tex]\( M_A \)[/tex], we rearrange the formula:

[tex]\[ M_A = \frac{M_B \times V_B}{V_A} \][/tex]

Given values from the table:
- [tex]\( V_A = 20 \, \text{mL} \)[/tex] for all titrations.

For Titration 1:
- [tex]\( V_B = 0.15 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.20 \)[/tex]

Thus,

[tex]\[ M_A = \frac{18.20 \times 0.15}{20} = \frac{2.73}{20} = 0.1365 \][/tex]

For Titration 2:
- [tex]\( V_B = 0.70 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.60 \)[/tex]

Thus,

[tex]\[ M_A = \frac{18.60 \times 0.70}{20} = \frac{13.02}{20} = 0.651 \][/tex]

For Titration 3:
- [tex]\( V_B = 18.30 \, \text{mL} \)[/tex]
- [tex]\( M_B = 34.40 \)[/tex]

Thus,

[tex]\[ M_A = \frac{34.40 \times 18.30}{20} = \frac{629.52}{20} = 31.476 \][/tex]

So the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solutions for each titration are:

1. Titration 1: [tex]\( M_A = 0.1365 \)[/tex]
2. Titration 2: [tex]\( M_A = 0.651 \)[/tex]
3. Titration 3: [tex]\( M_A = 31.476 \)[/tex]

The completed table is:

[tex]\[ \begin{array}{|l|l|l|l|} \hline & \text{\textbf{Titration 1}} & \text{\textbf{Titration 2}} & \text{\textbf{Titration 3}} \\ \hline \text{Volume of Acid} \, (V_A) \, \text{(in mL)} & 20 \, \text{mL} & 20 \, \text{mL} & 20 \, \text{mL} \\ \hline \text{Volume of Base} \, (V_B) \, \text{(in mL)} & 0.15 & 0.70 & 18.30 \\ \hline \text{Molarity of Base} \, (M_B) & 18.20 & 18.60 & 34.40 \\ \hline \text{Molarity of Acid} \, (M_A) & 0.1365 & 0.651 & 31.476 \\ \hline \end{array} \][/tex]

These molarities represent the concentration of [tex]\(\text{H}_2\text{SO}_4\)[/tex] for each of the three titrations.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.