Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Fill out the following table and answer questions 1 and 2.

\begin{tabular}{|l|l|l|l|}
\hline & Titration 1 & Titration 2 & Titration 3 \\
\hline \begin{tabular}{c}
Volume of Acid [tex]$\left( V _{ A }\right)$[/tex] \\
(in mL )
\end{tabular} & 20 mL & 20 mL & 20 mL \\
\hline \begin{tabular}{c}
Volume of Base [tex]$\left( V _{ B }\right)$[/tex] \\
(in mL )
\end{tabular} & 0.15 & 0.70 & 18.30 \\
\hline \begin{tabular}{l}
Molarity of Base [tex]$\left( M _{ B }\right)$[/tex]
\end{tabular} & 18.20 & 18.60 & 34.40 \\
\hline
\end{tabular}

1. Calculate the molarity of the [tex]$H_2SO_4$[/tex] solution for each of the three runs.


Sagot :

To calculate the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution for each titration, we can use the equation derived from the neutralization reaction:

[tex]\[ M_A \times V_A = M_B \times V_B \][/tex]

where:
- [tex]\( M_A \)[/tex] is the molarity of the acid [tex]\(\text{H}_2\text{SO}_4\)[/tex] (which we need to find),
- [tex]\( V_A \)[/tex] is the volume of the acid in mL,
- [tex]\( M_B \)[/tex] is the molarity of the base (given in the table),
- [tex]\( V_B \)[/tex] is the volume of the base in mL (given in the table).

To calculate [tex]\( M_A \)[/tex], we rearrange the formula:

[tex]\[ M_A = \frac{M_B \times V_B}{V_A} \][/tex]

Given values from the table:
- [tex]\( V_A = 20 \, \text{mL} \)[/tex] for all titrations.

For Titration 1:
- [tex]\( V_B = 0.15 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.20 \)[/tex]

Thus,

[tex]\[ M_A = \frac{18.20 \times 0.15}{20} = \frac{2.73}{20} = 0.1365 \][/tex]

For Titration 2:
- [tex]\( V_B = 0.70 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.60 \)[/tex]

Thus,

[tex]\[ M_A = \frac{18.60 \times 0.70}{20} = \frac{13.02}{20} = 0.651 \][/tex]

For Titration 3:
- [tex]\( V_B = 18.30 \, \text{mL} \)[/tex]
- [tex]\( M_B = 34.40 \)[/tex]

Thus,

[tex]\[ M_A = \frac{34.40 \times 18.30}{20} = \frac{629.52}{20} = 31.476 \][/tex]

So the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solutions for each titration are:

1. Titration 1: [tex]\( M_A = 0.1365 \)[/tex]
2. Titration 2: [tex]\( M_A = 0.651 \)[/tex]
3. Titration 3: [tex]\( M_A = 31.476 \)[/tex]

The completed table is:

[tex]\[ \begin{array}{|l|l|l|l|} \hline & \text{\textbf{Titration 1}} & \text{\textbf{Titration 2}} & \text{\textbf{Titration 3}} \\ \hline \text{Volume of Acid} \, (V_A) \, \text{(in mL)} & 20 \, \text{mL} & 20 \, \text{mL} & 20 \, \text{mL} \\ \hline \text{Volume of Base} \, (V_B) \, \text{(in mL)} & 0.15 & 0.70 & 18.30 \\ \hline \text{Molarity of Base} \, (M_B) & 18.20 & 18.60 & 34.40 \\ \hline \text{Molarity of Acid} \, (M_A) & 0.1365 & 0.651 & 31.476 \\ \hline \end{array} \][/tex]

These molarities represent the concentration of [tex]\(\text{H}_2\text{SO}_4\)[/tex] for each of the three titrations.