Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solution for each titration, we can use the equation derived from the neutralization reaction:
[tex]\[ M_A \times V_A = M_B \times V_B \][/tex]
where:
- [tex]\( M_A \)[/tex] is the molarity of the acid [tex]\(\text{H}_2\text{SO}_4\)[/tex] (which we need to find),
- [tex]\( V_A \)[/tex] is the volume of the acid in mL,
- [tex]\( M_B \)[/tex] is the molarity of the base (given in the table),
- [tex]\( V_B \)[/tex] is the volume of the base in mL (given in the table).
To calculate [tex]\( M_A \)[/tex], we rearrange the formula:
[tex]\[ M_A = \frac{M_B \times V_B}{V_A} \][/tex]
Given values from the table:
- [tex]\( V_A = 20 \, \text{mL} \)[/tex] for all titrations.
For Titration 1:
- [tex]\( V_B = 0.15 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.20 \)[/tex]
Thus,
[tex]\[ M_A = \frac{18.20 \times 0.15}{20} = \frac{2.73}{20} = 0.1365 \][/tex]
For Titration 2:
- [tex]\( V_B = 0.70 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.60 \)[/tex]
Thus,
[tex]\[ M_A = \frac{18.60 \times 0.70}{20} = \frac{13.02}{20} = 0.651 \][/tex]
For Titration 3:
- [tex]\( V_B = 18.30 \, \text{mL} \)[/tex]
- [tex]\( M_B = 34.40 \)[/tex]
Thus,
[tex]\[ M_A = \frac{34.40 \times 18.30}{20} = \frac{629.52}{20} = 31.476 \][/tex]
So the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solutions for each titration are:
1. Titration 1: [tex]\( M_A = 0.1365 \)[/tex]
2. Titration 2: [tex]\( M_A = 0.651 \)[/tex]
3. Titration 3: [tex]\( M_A = 31.476 \)[/tex]
The completed table is:
[tex]\[ \begin{array}{|l|l|l|l|} \hline & \text{\textbf{Titration 1}} & \text{\textbf{Titration 2}} & \text{\textbf{Titration 3}} \\ \hline \text{Volume of Acid} \, (V_A) \, \text{(in mL)} & 20 \, \text{mL} & 20 \, \text{mL} & 20 \, \text{mL} \\ \hline \text{Volume of Base} \, (V_B) \, \text{(in mL)} & 0.15 & 0.70 & 18.30 \\ \hline \text{Molarity of Base} \, (M_B) & 18.20 & 18.60 & 34.40 \\ \hline \text{Molarity of Acid} \, (M_A) & 0.1365 & 0.651 & 31.476 \\ \hline \end{array} \][/tex]
These molarities represent the concentration of [tex]\(\text{H}_2\text{SO}_4\)[/tex] for each of the three titrations.
[tex]\[ M_A \times V_A = M_B \times V_B \][/tex]
where:
- [tex]\( M_A \)[/tex] is the molarity of the acid [tex]\(\text{H}_2\text{SO}_4\)[/tex] (which we need to find),
- [tex]\( V_A \)[/tex] is the volume of the acid in mL,
- [tex]\( M_B \)[/tex] is the molarity of the base (given in the table),
- [tex]\( V_B \)[/tex] is the volume of the base in mL (given in the table).
To calculate [tex]\( M_A \)[/tex], we rearrange the formula:
[tex]\[ M_A = \frac{M_B \times V_B}{V_A} \][/tex]
Given values from the table:
- [tex]\( V_A = 20 \, \text{mL} \)[/tex] for all titrations.
For Titration 1:
- [tex]\( V_B = 0.15 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.20 \)[/tex]
Thus,
[tex]\[ M_A = \frac{18.20 \times 0.15}{20} = \frac{2.73}{20} = 0.1365 \][/tex]
For Titration 2:
- [tex]\( V_B = 0.70 \, \text{mL} \)[/tex]
- [tex]\( M_B = 18.60 \)[/tex]
Thus,
[tex]\[ M_A = \frac{18.60 \times 0.70}{20} = \frac{13.02}{20} = 0.651 \][/tex]
For Titration 3:
- [tex]\( V_B = 18.30 \, \text{mL} \)[/tex]
- [tex]\( M_B = 34.40 \)[/tex]
Thus,
[tex]\[ M_A = \frac{34.40 \times 18.30}{20} = \frac{629.52}{20} = 31.476 \][/tex]
So the molarity of the [tex]\(\text{H}_2\text{SO}_4\)[/tex] solutions for each titration are:
1. Titration 1: [tex]\( M_A = 0.1365 \)[/tex]
2. Titration 2: [tex]\( M_A = 0.651 \)[/tex]
3. Titration 3: [tex]\( M_A = 31.476 \)[/tex]
The completed table is:
[tex]\[ \begin{array}{|l|l|l|l|} \hline & \text{\textbf{Titration 1}} & \text{\textbf{Titration 2}} & \text{\textbf{Titration 3}} \\ \hline \text{Volume of Acid} \, (V_A) \, \text{(in mL)} & 20 \, \text{mL} & 20 \, \text{mL} & 20 \, \text{mL} \\ \hline \text{Volume of Base} \, (V_B) \, \text{(in mL)} & 0.15 & 0.70 & 18.30 \\ \hline \text{Molarity of Base} \, (M_B) & 18.20 & 18.60 & 34.40 \\ \hline \text{Molarity of Acid} \, (M_A) & 0.1365 & 0.651 & 31.476 \\ \hline \end{array} \][/tex]
These molarities represent the concentration of [tex]\(\text{H}_2\text{SO}_4\)[/tex] for each of the three titrations.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.