Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To classify the role of water in the given chemical reaction:
[tex]\[ NH_3(g) + H_2O (\ell) \rightarrow NH_4^+ (aq) + OH^- (aq) \][/tex]
we need to examine how water participates in this reaction according to the Brønsted-Lowry theory. The Brønsted-Lowry definition states:
- An acid is a substance that donates a proton (H⁺).
- A base is a substance that accepts a proton (H⁺).
Let's look at what happens in the reaction:
1. Ammonia [tex]\( NH_3 \)[/tex] gains a proton (H⁺) to form ammonium [tex]\( NH_4^+ \)[/tex].
2. Water [tex]\( H_2O \)[/tex] loses a proton (H⁺) to form hydroxide ion [tex]\( OH^- \)[/tex].
In this reaction:
- Water [tex]\( H_2O \)[/tex] donates a proton to ammonia, resulting in the formation of the hydroxide ion.
- Ammonia [tex]\( NH_3 \)[/tex] accepts the proton from water, resulting in the formation of the ammonium ion.
According to the Brønsted-Lowry definition:
- Because water [tex]\( H_2O \)[/tex] donates a proton, it behaves as a Brønsted-Lowry acid in this reaction.
Therefore, the correct classification of water in this reaction is:
A. As a Brønsted-Lowry acid, because it donates a proton.
[tex]\[ NH_3(g) + H_2O (\ell) \rightarrow NH_4^+ (aq) + OH^- (aq) \][/tex]
we need to examine how water participates in this reaction according to the Brønsted-Lowry theory. The Brønsted-Lowry definition states:
- An acid is a substance that donates a proton (H⁺).
- A base is a substance that accepts a proton (H⁺).
Let's look at what happens in the reaction:
1. Ammonia [tex]\( NH_3 \)[/tex] gains a proton (H⁺) to form ammonium [tex]\( NH_4^+ \)[/tex].
2. Water [tex]\( H_2O \)[/tex] loses a proton (H⁺) to form hydroxide ion [tex]\( OH^- \)[/tex].
In this reaction:
- Water [tex]\( H_2O \)[/tex] donates a proton to ammonia, resulting in the formation of the hydroxide ion.
- Ammonia [tex]\( NH_3 \)[/tex] accepts the proton from water, resulting in the formation of the ammonium ion.
According to the Brønsted-Lowry definition:
- Because water [tex]\( H_2O \)[/tex] donates a proton, it behaves as a Brønsted-Lowry acid in this reaction.
Therefore, the correct classification of water in this reaction is:
A. As a Brønsted-Lowry acid, because it donates a proton.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.