Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given expressions is NOT a rational expression, we need to first understand the definition. A rational expression is a ratio of two polynomials. Therefore, if any part of the expression involves a non-polynomial element (such as roots, trigonometric functions, etc.), it will not be considered a rational expression.
Let's analyze each given expression one by one:
### Expression 1: [tex]\(\frac{2 x^2 - 3 x^3 + 5}{5 x}\)[/tex]
- Numerator: [tex]\(2 x^2 - 3 x^3 + 5\)[/tex] is a polynomial.
- Denominator: [tex]\(5 x\)[/tex] is also a polynomial.
- Since both the numerator and the denominator are polynomials, this is a rational expression.
### Expression 2: [tex]\(\frac{3 x^2 + 3 x}{4 x + 5}\)[/tex]
- Numerator: [tex]\(3 x^2 + 3 x\)[/tex] is a polynomial.
- Denominator: [tex]\(4 x + 5\)[/tex] is a polynomial.
- Since both the numerator and the denominator are polynomials, this is a rational expression.
### Expression 3: [tex]\(\frac{(x + 3)(2 x - 1)}{x + 3}\)[/tex]
- Numerator: When expanded, [tex]\((x + 3)(2 x - 1)\)[/tex] is a polynomial.
- Denominator: [tex]\(x + 3\)[/tex] is a polynomial.
- Since both the numerator and the denominator are polynomials, this is a rational expression.
### Expression 4: [tex]\(\frac{3 x + 4 \sqrt{x} - 7}{2 x + 2}\)[/tex]
- Numerator: [tex]\(3 x + 4 \sqrt{x} - 7\)[/tex] includes a square root term ([tex]\(\sqrt{x}\)[/tex]), which is not a polynomial.
- Denominator: [tex]\(2 x + 2\)[/tex] is a polynomial.
- Since the numerator contains a square root, it is not a polynomial. Thus, this expression is NOT a rational expression.
### Conclusion:
The expression that is NOT a rational expression is:
[tex]\[ \frac{3 x + 4 \sqrt{x} - 7}{2 x + 2} \][/tex]
So the answer is the fourth expression.
Let's analyze each given expression one by one:
### Expression 1: [tex]\(\frac{2 x^2 - 3 x^3 + 5}{5 x}\)[/tex]
- Numerator: [tex]\(2 x^2 - 3 x^3 + 5\)[/tex] is a polynomial.
- Denominator: [tex]\(5 x\)[/tex] is also a polynomial.
- Since both the numerator and the denominator are polynomials, this is a rational expression.
### Expression 2: [tex]\(\frac{3 x^2 + 3 x}{4 x + 5}\)[/tex]
- Numerator: [tex]\(3 x^2 + 3 x\)[/tex] is a polynomial.
- Denominator: [tex]\(4 x + 5\)[/tex] is a polynomial.
- Since both the numerator and the denominator are polynomials, this is a rational expression.
### Expression 3: [tex]\(\frac{(x + 3)(2 x - 1)}{x + 3}\)[/tex]
- Numerator: When expanded, [tex]\((x + 3)(2 x - 1)\)[/tex] is a polynomial.
- Denominator: [tex]\(x + 3\)[/tex] is a polynomial.
- Since both the numerator and the denominator are polynomials, this is a rational expression.
### Expression 4: [tex]\(\frac{3 x + 4 \sqrt{x} - 7}{2 x + 2}\)[/tex]
- Numerator: [tex]\(3 x + 4 \sqrt{x} - 7\)[/tex] includes a square root term ([tex]\(\sqrt{x}\)[/tex]), which is not a polynomial.
- Denominator: [tex]\(2 x + 2\)[/tex] is a polynomial.
- Since the numerator contains a square root, it is not a polynomial. Thus, this expression is NOT a rational expression.
### Conclusion:
The expression that is NOT a rational expression is:
[tex]\[ \frac{3 x + 4 \sqrt{x} - 7}{2 x + 2} \][/tex]
So the answer is the fourth expression.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.