Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A baker has a bin filled with 30 cups of flour. His signature cake requires one and a half cups of flour. Determine which graph and which equation represent the amount of flour in the bin, [tex][tex]$F$[/tex][/tex], after he bakes [tex]$c$[/tex] signature cakes.

Sagot :

Sure, let's approach the problem step by step.

1. Initial Amount: The baker starts with a bin containing 30 cups of flour. This is our initial value.

2. Flour Requirement per Cake: Each signature cake requires 1.5 cups of flour to bake.

3. Equation Setup: We want to determine the amount of flour [tex]\(F\)[/tex] remaining in the bin after baking [tex]\(c\)[/tex] number of cakes. Let's denote:
- [tex]\(F\)[/tex] as the amount of flour remaining in the bin.
- [tex]\(c\)[/tex] as the number of cakes baked.

4. Formulating the Equation:
- Initially, there are 30 cups of flour.
- For each cake baked, 1.5 cups of flour is used.
- Therefore, the amount of flour used after baking [tex]\(c\)[/tex] cakes is [tex]\(1.5 \times c\)[/tex].

5. Remaining Flour: To find the remaining flour [tex]\(F\)[/tex], we subtract the total flour used from the initial amount of flour. Thus our equation becomes:
[tex]\[ F = 30 - 1.5c \][/tex]
This equation shows the relationship between the amount of flour remaining [tex]\(F\)[/tex] and the number of cakes baked [tex]\(c\)[/tex].

6. Graph Representation: In a graph, this equation can be represented as a straight line with:
- The y-axis (vertical axis) representing the amount of flour [tex]\(F\)[/tex].
- The x-axis (horizontal axis) representing the number of cakes [tex]\(c\)[/tex].

7. Plotting Key Points:
- Starting Point: When [tex]\(c = 0\)[/tex], no cakes are baked, so the flour is at its initial amount: [tex]\(F = 30\)[/tex].
- Slope: For each additional cake baked (moving 1 unit to the right on the x-axis), the amount of flour decreases by 1.5 cups (moving 1.5 units down on the y-axis).

Thus, the graph will be a downward sloping line starting from (0, 30) and descending with a slope of -1.5.

In summary:
- The equation representing the amount of flour in the bin after baking [tex]\(c\)[/tex] signature cakes is:
[tex]\[ F = 30 - 1.5c \][/tex]
- This equation can be graphically represented by a line with a y-intercept at 30 and a slope of -1.5, reflecting the reduction in flour as more cakes are baked.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.