Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The integrated rate laws for zero-, first-, and second-order reactions may be arranged such that they resemble the equation for a straight line, [tex]\( y = mx + b \)[/tex]:

\begin{tabular}{|c|c|c|c|}
\hline Order & Integrated Rate Law & Graph & Slope \\
\hline 0 & [tex]\([A] = -kt + [A]_0\)[/tex] & [tex]\([A] \text{ vs. } t\)[/tex] & [tex]\(-k\)[/tex] \\
\hline 1 & [tex]\(\ln [A] = -kt + \ln [A]_0\)[/tex] & [tex]\(\ln [A] \text{ vs. } t\)[/tex] & [tex]\(-k\)[/tex] \\
\hline 2 & [tex]\(\frac{1}{[A]} = kt + \frac{1}{[A]_0}\)[/tex] & [tex]\(\frac{1}{[A]} \text{ vs. } t\)[/tex] & [tex]\(k\)[/tex] \\
\hline
\end{tabular}

Part A

The reactant concentration in a zero-order reaction was 0.100 M after 110 s and [tex]\(3.50 \times 10^{-2}\)[/tex] M after 395 s. What is the rate constant for this reaction?

Express your answer with the appropriate units. Indicate the multiplication of units, as necessary, explicitly either with a multiplication dot or a dash.

[tex]\(\boxed{\phantom{k = \text{Value Units}}}\)[/tex]


Sagot :

To determine the rate constant [tex]\( k \)[/tex] for a zero-order reaction, we use the integrated rate law for zero-order reactions:

[tex]\[ [A]_t = -kt + [A]_0 \][/tex]

Where:
- [tex]\([A]_t\)[/tex] is the concentration of the reactant at time [tex]\( t \)[/tex]
- [tex]\( k \)[/tex] is the rate constant
- [tex]\( t \)[/tex] is the time
- [tex]\([A]_0\)[/tex] is the initial concentration of the reactant

Given:
- Initial concentration [tex]\([A]_0\)[/tex] = 0.100 M at [tex]\( t = 110 \)[/tex] s
- Concentration [tex]\([A]_t\)[/tex] = 3.50 \times 10^{-2} \) M at [tex]\( t = 395 \)[/tex] s

We need to find the change in concentration and change in time first.

1. Calculate the change in concentration ([tex]\(\Delta [A]\)[/tex]):

[tex]\[ \Delta [A] = [A]_0 - [A]_t \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 3.50 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.100 \, \text{M} - 0.035 \, \text{M} \][/tex]
[tex]\[ \Delta [A] = 0.065 \, \text{M} \][/tex]

2. Calculate the change in time ([tex]\(\Delta t\)[/tex]):

[tex]\[ \Delta t = t_2 - t_1 \][/tex]
[tex]\[ \Delta t = 395 \, \text{s} - 110 \, \text{s} \][/tex]
[tex]\[ \Delta t = 285 \, \text{s} \][/tex]

3. Now, we use the formula rearranged for the rate constant ([tex]\( k \)[/tex]):

[tex]\[ k = \frac{\Delta [A]}{\Delta t} \][/tex]

Substitute the values:

[tex]\[ k = \frac{0.065 \, \text{M}}{285 \, \text{s}} \][/tex]

Perform the division to find [tex]\( k \)[/tex]:

[tex]\[ k \approx 0.000228 \, \text{M/s} \][/tex]

Therefore, the rate constant for the reaction is:

[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]

Make sure to include the appropriate units to indicate the multiplication explicitly:

[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]

So the final answer is:

[tex]\[ k = 0.000228 \, \text{M} \cdot \text{s}^{-1} \][/tex]