Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's go through the process step by step to construct a 95% confidence interval for the true population proportion of adults with children.
### Step-by-Step Solution:
1. Sample Size ([tex]\( n \)[/tex]):
- The sample size [tex]\( n \)[/tex] is given as 490.
2. Number of Adults with Children:
- Out of these 490 adults, 343 have children.
3. Sample Proportion ([tex]\( \hat{p} \)[/tex]):
- The sample proportion [tex]\( \hat{p} \)[/tex] is calculated as the number of adults with children divided by the total sample size:
[tex]\[ \hat{p} = \frac{343}{490} = 0.7 \][/tex]
4. Z-Value for 95% Confidence:
- For a 95% confidence interval, we use a Z-value corresponding to the middle 95% of the standard normal distribution. The Z-value for 95% confidence is approximately 1.96.
5. Standard Error of the Proportion ([tex]\( SE \)[/tex]):
- The standard error of the proportion is calculated using the formula:
[tex]\[ SE = \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}} \][/tex]
Plugging in the values, we get:
[tex]\[ SE = \sqrt{\frac{0.7 \times (1 - 0.7)}{490}} = 0.0207 \][/tex]
6. Margin of Error (ME):
- The margin of error is calculated by multiplying the Z-value by the standard error:
[tex]\[ ME = Z \times SE = 1.96 \times 0.0207 = 0.0406 \][/tex]
7. Confidence Interval:
- The confidence interval is calculated by adding and subtracting the margin of error from the sample proportion:
[tex]\[ \text{Lower Limit} = \hat{p} - ME = 0.7 - 0.0406 = 0.659 \][/tex]
[tex]\[ \text{Upper Limit} = \hat{p} + ME = 0.7 + 0.0406 = 0.741 \][/tex]
Therefore, the 95% confidence interval for the true population proportion of adults with children is approximately (0.659, 0.741).
This means that we are 95% confident that the true proportion of adults with children in the population is between 0.659 and 0.741.
### Step-by-Step Solution:
1. Sample Size ([tex]\( n \)[/tex]):
- The sample size [tex]\( n \)[/tex] is given as 490.
2. Number of Adults with Children:
- Out of these 490 adults, 343 have children.
3. Sample Proportion ([tex]\( \hat{p} \)[/tex]):
- The sample proportion [tex]\( \hat{p} \)[/tex] is calculated as the number of adults with children divided by the total sample size:
[tex]\[ \hat{p} = \frac{343}{490} = 0.7 \][/tex]
4. Z-Value for 95% Confidence:
- For a 95% confidence interval, we use a Z-value corresponding to the middle 95% of the standard normal distribution. The Z-value for 95% confidence is approximately 1.96.
5. Standard Error of the Proportion ([tex]\( SE \)[/tex]):
- The standard error of the proportion is calculated using the formula:
[tex]\[ SE = \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}} \][/tex]
Plugging in the values, we get:
[tex]\[ SE = \sqrt{\frac{0.7 \times (1 - 0.7)}{490}} = 0.0207 \][/tex]
6. Margin of Error (ME):
- The margin of error is calculated by multiplying the Z-value by the standard error:
[tex]\[ ME = Z \times SE = 1.96 \times 0.0207 = 0.0406 \][/tex]
7. Confidence Interval:
- The confidence interval is calculated by adding and subtracting the margin of error from the sample proportion:
[tex]\[ \text{Lower Limit} = \hat{p} - ME = 0.7 - 0.0406 = 0.659 \][/tex]
[tex]\[ \text{Upper Limit} = \hat{p} + ME = 0.7 + 0.0406 = 0.741 \][/tex]
Therefore, the 95% confidence interval for the true population proportion of adults with children is approximately (0.659, 0.741).
This means that we are 95% confident that the true proportion of adults with children in the population is between 0.659 and 0.741.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.