Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the equation that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months, we need to find a linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
The general form of the equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
### Step 1: Calculate the Slope (m)
The slope [tex]\( m \)[/tex] is calculated using two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] from the table. We will use the points [tex]\((1, 1859)\)[/tex] and [tex]\((12, 5808)\)[/tex].
Using the formula for the slope:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from the selected points:
[tex]\[ m = \frac{5808 - 1859}{12 - 1} \][/tex]
[tex]\[ m = \frac{3949}{11} \][/tex]
[tex]\[ m = 359 \][/tex]
### Step 2: Calculate the Y-Intercept (b)
The y-intercept [tex]\( b \)[/tex] is found by using one of the points and the slope we just calculated. Let's use the point [tex]\((1, 1859)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
Plugging in the values:
[tex]\[ 1859 = 359 \cdot 1 + b \][/tex]
[tex]\[ 1859 = 359 + b \][/tex]
[tex]\[ b = 1859 - 359 \][/tex]
[tex]\[ b = 1500 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have the slope [tex]\( m = 359 \)[/tex] and the y-intercept [tex]\( b = 1500 \)[/tex], we can write the equation:
[tex]\[ y = 359x + 1500 \][/tex]
So, the equation that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months is:
[tex]\[ y = 359x + 1500 \][/tex]
The general form of the equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
### Step 1: Calculate the Slope (m)
The slope [tex]\( m \)[/tex] is calculated using two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] from the table. We will use the points [tex]\((1, 1859)\)[/tex] and [tex]\((12, 5808)\)[/tex].
Using the formula for the slope:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from the selected points:
[tex]\[ m = \frac{5808 - 1859}{12 - 1} \][/tex]
[tex]\[ m = \frac{3949}{11} \][/tex]
[tex]\[ m = 359 \][/tex]
### Step 2: Calculate the Y-Intercept (b)
The y-intercept [tex]\( b \)[/tex] is found by using one of the points and the slope we just calculated. Let's use the point [tex]\((1, 1859)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
Plugging in the values:
[tex]\[ 1859 = 359 \cdot 1 + b \][/tex]
[tex]\[ 1859 = 359 + b \][/tex]
[tex]\[ b = 1859 - 359 \][/tex]
[tex]\[ b = 1500 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have the slope [tex]\( m = 359 \)[/tex] and the y-intercept [tex]\( b = 1500 \)[/tex], we can write the equation:
[tex]\[ y = 359x + 1500 \][/tex]
So, the equation that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months is:
[tex]\[ y = 359x + 1500 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.