Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equation that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months, we need to find a linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
The general form of the equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
### Step 1: Calculate the Slope (m)
The slope [tex]\( m \)[/tex] is calculated using two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] from the table. We will use the points [tex]\((1, 1859)\)[/tex] and [tex]\((12, 5808)\)[/tex].
Using the formula for the slope:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from the selected points:
[tex]\[ m = \frac{5808 - 1859}{12 - 1} \][/tex]
[tex]\[ m = \frac{3949}{11} \][/tex]
[tex]\[ m = 359 \][/tex]
### Step 2: Calculate the Y-Intercept (b)
The y-intercept [tex]\( b \)[/tex] is found by using one of the points and the slope we just calculated. Let's use the point [tex]\((1, 1859)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
Plugging in the values:
[tex]\[ 1859 = 359 \cdot 1 + b \][/tex]
[tex]\[ 1859 = 359 + b \][/tex]
[tex]\[ b = 1859 - 359 \][/tex]
[tex]\[ b = 1500 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have the slope [tex]\( m = 359 \)[/tex] and the y-intercept [tex]\( b = 1500 \)[/tex], we can write the equation:
[tex]\[ y = 359x + 1500 \][/tex]
So, the equation that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months is:
[tex]\[ y = 359x + 1500 \][/tex]
The general form of the equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
### Step 1: Calculate the Slope (m)
The slope [tex]\( m \)[/tex] is calculated using two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] from the table. We will use the points [tex]\((1, 1859)\)[/tex] and [tex]\((12, 5808)\)[/tex].
Using the formula for the slope:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from the selected points:
[tex]\[ m = \frac{5808 - 1859}{12 - 1} \][/tex]
[tex]\[ m = \frac{3949}{11} \][/tex]
[tex]\[ m = 359 \][/tex]
### Step 2: Calculate the Y-Intercept (b)
The y-intercept [tex]\( b \)[/tex] is found by using one of the points and the slope we just calculated. Let's use the point [tex]\((1, 1859)\)[/tex]:
[tex]\[ y = mx + b \][/tex]
Plugging in the values:
[tex]\[ 1859 = 359 \cdot 1 + b \][/tex]
[tex]\[ 1859 = 359 + b \][/tex]
[tex]\[ b = 1859 - 359 \][/tex]
[tex]\[ b = 1500 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have the slope [tex]\( m = 359 \)[/tex] and the y-intercept [tex]\( b = 1500 \)[/tex], we can write the equation:
[tex]\[ y = 359x + 1500 \][/tex]
So, the equation that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months is:
[tex]\[ y = 359x + 1500 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.