Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To prove by induction that for all positive integers [tex]\( n \)[/tex], [tex]\( 21 \mid \left(4^{n+1} + 5^{2n-1}\right) \)[/tex], we follow these steps:
### Base Case
Let's check the base case when [tex]\( n = 1 \)[/tex]:
[tex]\[ 4^{n+1} + 5^{2n-1} = 4^{1+1} + 5^{2 \cdot 1 - 1} = 4^2 + 5^1 = 16 + 5 = 21 \][/tex]
Since [tex]\( 21 \)[/tex] is divisible by [tex]\( 21 \)[/tex]:
[tex]\[ 21 \mid 21 \][/tex]
The base case holds true.
### Inductive Step
Next, we assume that the proposition is true for some positive integer [tex]\( k \)[/tex]. That is, we assume:
[tex]\[ 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \][/tex]
This is our induction hypothesis.
We need to prove that the proposition is true for [tex]\( k+1 \)[/tex], i.e., we need to show:
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Simplify the expression:
[tex]\[ 4^{(k+1)+1} + 5^{2(k+1)-1} = 4^{k+2} + 5^{2k+1} \][/tex]
We need to show that [tex]\( 4^{k+2} + 5^{2k+1} \)[/tex] is divisible by [tex]\( 21 \)[/tex].
Express [tex]\( 4^{k+2} \)[/tex] in terms of [tex]\( 4^{k+1} \)[/tex]:
[tex]\[ 4^{k+2} = 4 \cdot 4^{k+1} \][/tex]
Similarly, express [tex]\( 5^{2k+1} \)[/tex] in terms of [tex]\( 5^{2k-1} \)[/tex]:
[tex]\[ 5^{2k+1} = 25 \cdot 5^{2k-1} \][/tex]
Thus, our problem reduces to:
[tex]\[ 4^{k+2} + 5^{2k+1} = 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \][/tex]
Using our induction hypothesis [tex]\( 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \)[/tex]:
[tex]\[ 4^{k+1} + 5^{2k-1} = 21m \quad \text{for some integer } m \][/tex]
We need to find a way to express [tex]\( 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \)[/tex] in terms of [tex]\( 21 \)[/tex]. Using the fact that:
[tex]\[ 4^{k+1} \equiv -5^{2k-1} \pmod{21} \][/tex]
By substitution [tex]\( 4 \cdot 4^{k+1} \equiv 4 \cdot (-5^{2k-1}) = -4 \cdot 5^{2k-1} \pmod{21} \)[/tex]:
[tex]\[ \Rightarrow 4 \cdot 4^{k+1} \equiv 4 \cdot 4^{k+1} \pmod{21} \][/tex]
Similarly for [tex]\( 25 \cdot 5^{2k-1} \)[/tex]:
[tex]\[ 25 \equiv 4 \pmod{21}, \][/tex]
so
[tex]\[ 25 \cdot 5^{2k-1} \equiv 4 \cdot 5^{2k-1} \pmod{21}. \][/tex]
Combining these results:
[tex]\[ 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \equiv 4 \cdot 4^{k+1} + 4 \cdot 5^{2k-1} \equiv 0 \pmod{21}. \][/tex]
Therefore,
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Thus, by induction, for all positive integers [tex]\( n \)[/tex]:
[tex]\[ 21 \mid \left( 4^{n+1} + 5^{2n-1} \right) \][/tex]
This concludes the proof by mathematical induction.
### Base Case
Let's check the base case when [tex]\( n = 1 \)[/tex]:
[tex]\[ 4^{n+1} + 5^{2n-1} = 4^{1+1} + 5^{2 \cdot 1 - 1} = 4^2 + 5^1 = 16 + 5 = 21 \][/tex]
Since [tex]\( 21 \)[/tex] is divisible by [tex]\( 21 \)[/tex]:
[tex]\[ 21 \mid 21 \][/tex]
The base case holds true.
### Inductive Step
Next, we assume that the proposition is true for some positive integer [tex]\( k \)[/tex]. That is, we assume:
[tex]\[ 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \][/tex]
This is our induction hypothesis.
We need to prove that the proposition is true for [tex]\( k+1 \)[/tex], i.e., we need to show:
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Simplify the expression:
[tex]\[ 4^{(k+1)+1} + 5^{2(k+1)-1} = 4^{k+2} + 5^{2k+1} \][/tex]
We need to show that [tex]\( 4^{k+2} + 5^{2k+1} \)[/tex] is divisible by [tex]\( 21 \)[/tex].
Express [tex]\( 4^{k+2} \)[/tex] in terms of [tex]\( 4^{k+1} \)[/tex]:
[tex]\[ 4^{k+2} = 4 \cdot 4^{k+1} \][/tex]
Similarly, express [tex]\( 5^{2k+1} \)[/tex] in terms of [tex]\( 5^{2k-1} \)[/tex]:
[tex]\[ 5^{2k+1} = 25 \cdot 5^{2k-1} \][/tex]
Thus, our problem reduces to:
[tex]\[ 4^{k+2} + 5^{2k+1} = 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \][/tex]
Using our induction hypothesis [tex]\( 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \)[/tex]:
[tex]\[ 4^{k+1} + 5^{2k-1} = 21m \quad \text{for some integer } m \][/tex]
We need to find a way to express [tex]\( 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \)[/tex] in terms of [tex]\( 21 \)[/tex]. Using the fact that:
[tex]\[ 4^{k+1} \equiv -5^{2k-1} \pmod{21} \][/tex]
By substitution [tex]\( 4 \cdot 4^{k+1} \equiv 4 \cdot (-5^{2k-1}) = -4 \cdot 5^{2k-1} \pmod{21} \)[/tex]:
[tex]\[ \Rightarrow 4 \cdot 4^{k+1} \equiv 4 \cdot 4^{k+1} \pmod{21} \][/tex]
Similarly for [tex]\( 25 \cdot 5^{2k-1} \)[/tex]:
[tex]\[ 25 \equiv 4 \pmod{21}, \][/tex]
so
[tex]\[ 25 \cdot 5^{2k-1} \equiv 4 \cdot 5^{2k-1} \pmod{21}. \][/tex]
Combining these results:
[tex]\[ 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \equiv 4 \cdot 4^{k+1} + 4 \cdot 5^{2k-1} \equiv 0 \pmod{21}. \][/tex]
Therefore,
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Thus, by induction, for all positive integers [tex]\( n \)[/tex]:
[tex]\[ 21 \mid \left( 4^{n+1} + 5^{2n-1} \right) \][/tex]
This concludes the proof by mathematical induction.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.