Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To prove by induction that for all positive integers [tex]\( n \)[/tex], [tex]\( 21 \mid \left(4^{n+1} + 5^{2n-1}\right) \)[/tex], we follow these steps:
### Base Case
Let's check the base case when [tex]\( n = 1 \)[/tex]:
[tex]\[ 4^{n+1} + 5^{2n-1} = 4^{1+1} + 5^{2 \cdot 1 - 1} = 4^2 + 5^1 = 16 + 5 = 21 \][/tex]
Since [tex]\( 21 \)[/tex] is divisible by [tex]\( 21 \)[/tex]:
[tex]\[ 21 \mid 21 \][/tex]
The base case holds true.
### Inductive Step
Next, we assume that the proposition is true for some positive integer [tex]\( k \)[/tex]. That is, we assume:
[tex]\[ 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \][/tex]
This is our induction hypothesis.
We need to prove that the proposition is true for [tex]\( k+1 \)[/tex], i.e., we need to show:
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Simplify the expression:
[tex]\[ 4^{(k+1)+1} + 5^{2(k+1)-1} = 4^{k+2} + 5^{2k+1} \][/tex]
We need to show that [tex]\( 4^{k+2} + 5^{2k+1} \)[/tex] is divisible by [tex]\( 21 \)[/tex].
Express [tex]\( 4^{k+2} \)[/tex] in terms of [tex]\( 4^{k+1} \)[/tex]:
[tex]\[ 4^{k+2} = 4 \cdot 4^{k+1} \][/tex]
Similarly, express [tex]\( 5^{2k+1} \)[/tex] in terms of [tex]\( 5^{2k-1} \)[/tex]:
[tex]\[ 5^{2k+1} = 25 \cdot 5^{2k-1} \][/tex]
Thus, our problem reduces to:
[tex]\[ 4^{k+2} + 5^{2k+1} = 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \][/tex]
Using our induction hypothesis [tex]\( 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \)[/tex]:
[tex]\[ 4^{k+1} + 5^{2k-1} = 21m \quad \text{for some integer } m \][/tex]
We need to find a way to express [tex]\( 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \)[/tex] in terms of [tex]\( 21 \)[/tex]. Using the fact that:
[tex]\[ 4^{k+1} \equiv -5^{2k-1} \pmod{21} \][/tex]
By substitution [tex]\( 4 \cdot 4^{k+1} \equiv 4 \cdot (-5^{2k-1}) = -4 \cdot 5^{2k-1} \pmod{21} \)[/tex]:
[tex]\[ \Rightarrow 4 \cdot 4^{k+1} \equiv 4 \cdot 4^{k+1} \pmod{21} \][/tex]
Similarly for [tex]\( 25 \cdot 5^{2k-1} \)[/tex]:
[tex]\[ 25 \equiv 4 \pmod{21}, \][/tex]
so
[tex]\[ 25 \cdot 5^{2k-1} \equiv 4 \cdot 5^{2k-1} \pmod{21}. \][/tex]
Combining these results:
[tex]\[ 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \equiv 4 \cdot 4^{k+1} + 4 \cdot 5^{2k-1} \equiv 0 \pmod{21}. \][/tex]
Therefore,
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Thus, by induction, for all positive integers [tex]\( n \)[/tex]:
[tex]\[ 21 \mid \left( 4^{n+1} + 5^{2n-1} \right) \][/tex]
This concludes the proof by mathematical induction.
### Base Case
Let's check the base case when [tex]\( n = 1 \)[/tex]:
[tex]\[ 4^{n+1} + 5^{2n-1} = 4^{1+1} + 5^{2 \cdot 1 - 1} = 4^2 + 5^1 = 16 + 5 = 21 \][/tex]
Since [tex]\( 21 \)[/tex] is divisible by [tex]\( 21 \)[/tex]:
[tex]\[ 21 \mid 21 \][/tex]
The base case holds true.
### Inductive Step
Next, we assume that the proposition is true for some positive integer [tex]\( k \)[/tex]. That is, we assume:
[tex]\[ 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \][/tex]
This is our induction hypothesis.
We need to prove that the proposition is true for [tex]\( k+1 \)[/tex], i.e., we need to show:
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Simplify the expression:
[tex]\[ 4^{(k+1)+1} + 5^{2(k+1)-1} = 4^{k+2} + 5^{2k+1} \][/tex]
We need to show that [tex]\( 4^{k+2} + 5^{2k+1} \)[/tex] is divisible by [tex]\( 21 \)[/tex].
Express [tex]\( 4^{k+2} \)[/tex] in terms of [tex]\( 4^{k+1} \)[/tex]:
[tex]\[ 4^{k+2} = 4 \cdot 4^{k+1} \][/tex]
Similarly, express [tex]\( 5^{2k+1} \)[/tex] in terms of [tex]\( 5^{2k-1} \)[/tex]:
[tex]\[ 5^{2k+1} = 25 \cdot 5^{2k-1} \][/tex]
Thus, our problem reduces to:
[tex]\[ 4^{k+2} + 5^{2k+1} = 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \][/tex]
Using our induction hypothesis [tex]\( 21 \mid \left( 4^{k+1} + 5^{2k-1} \right) \)[/tex]:
[tex]\[ 4^{k+1} + 5^{2k-1} = 21m \quad \text{for some integer } m \][/tex]
We need to find a way to express [tex]\( 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \)[/tex] in terms of [tex]\( 21 \)[/tex]. Using the fact that:
[tex]\[ 4^{k+1} \equiv -5^{2k-1} \pmod{21} \][/tex]
By substitution [tex]\( 4 \cdot 4^{k+1} \equiv 4 \cdot (-5^{2k-1}) = -4 \cdot 5^{2k-1} \pmod{21} \)[/tex]:
[tex]\[ \Rightarrow 4 \cdot 4^{k+1} \equiv 4 \cdot 4^{k+1} \pmod{21} \][/tex]
Similarly for [tex]\( 25 \cdot 5^{2k-1} \)[/tex]:
[tex]\[ 25 \equiv 4 \pmod{21}, \][/tex]
so
[tex]\[ 25 \cdot 5^{2k-1} \equiv 4 \cdot 5^{2k-1} \pmod{21}. \][/tex]
Combining these results:
[tex]\[ 4 \cdot 4^{k+1} + 25 \cdot 5^{2k-1} \equiv 4 \cdot 4^{k+1} + 4 \cdot 5^{2k-1} \equiv 0 \pmod{21}. \][/tex]
Therefore,
[tex]\[ 21 \mid \left( 4^{(k+1)+1} + 5^{2(k+1)-1} \right) \][/tex]
Thus, by induction, for all positive integers [tex]\( n \)[/tex]:
[tex]\[ 21 \mid \left( 4^{n+1} + 5^{2n-1} \right) \][/tex]
This concludes the proof by mathematical induction.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.