Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the height of the building, we can use some basic trigonometry.
1. Identify the Given Values:
- Distance from the building: [tex]\( d = 50 \)[/tex] feet
- Angle of elevation to the top of the building: [tex]\( \theta = 60^\circ \)[/tex]
2. Understand the Relationship:
- We can use the tangent function in trigonometry, which relates the angle of elevation ([tex]\(\theta\)[/tex]), the height of the building ([tex]\(h\)[/tex]), and the distance from the building ([tex]\(d\)[/tex]).
- The tangent of an angle in a right triangle is defined as the ratio of the opposite side (height of the building) to the adjacent side (distance from the building):
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{d} \][/tex]
3. Set Up the Equation:
- Substitute the given values into the tangent relationship:
[tex]\[ \tan(60^\circ) = \frac{h}{50} \][/tex]
4. Solve for the Height ([tex]\(h\)[/tex]):
- We need the value of [tex]\(\tan(60^\circ)\)[/tex]. From trigonometric tables or identities, we know:
[tex]\[ \tan(60^\circ) = \sqrt{3} \][/tex]
- Substitute this value into the equation:
[tex]\[ \sqrt{3} = \frac{h}{50} \][/tex]
- Solve for [tex]\(h\)[/tex] by multiplying both sides by 50:
[tex]\[ h = 50 \times \sqrt{3} \][/tex]
5. Calculate the Height (numerically):
- Numerically, [tex]\(\sqrt{3} \approx 1.732\)[/tex], so:
[tex]\[ h \approx 50 \times 1.732 = 86.60254037844383 \text{ feet} \][/tex]
Thus, the height of the building is approximately 86.60 feet.
The closest choice from the given options is:
[tex]\[ 50 \sqrt{3} \text{ feet} \][/tex]
1. Identify the Given Values:
- Distance from the building: [tex]\( d = 50 \)[/tex] feet
- Angle of elevation to the top of the building: [tex]\( \theta = 60^\circ \)[/tex]
2. Understand the Relationship:
- We can use the tangent function in trigonometry, which relates the angle of elevation ([tex]\(\theta\)[/tex]), the height of the building ([tex]\(h\)[/tex]), and the distance from the building ([tex]\(d\)[/tex]).
- The tangent of an angle in a right triangle is defined as the ratio of the opposite side (height of the building) to the adjacent side (distance from the building):
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{d} \][/tex]
3. Set Up the Equation:
- Substitute the given values into the tangent relationship:
[tex]\[ \tan(60^\circ) = \frac{h}{50} \][/tex]
4. Solve for the Height ([tex]\(h\)[/tex]):
- We need the value of [tex]\(\tan(60^\circ)\)[/tex]. From trigonometric tables or identities, we know:
[tex]\[ \tan(60^\circ) = \sqrt{3} \][/tex]
- Substitute this value into the equation:
[tex]\[ \sqrt{3} = \frac{h}{50} \][/tex]
- Solve for [tex]\(h\)[/tex] by multiplying both sides by 50:
[tex]\[ h = 50 \times \sqrt{3} \][/tex]
5. Calculate the Height (numerically):
- Numerically, [tex]\(\sqrt{3} \approx 1.732\)[/tex], so:
[tex]\[ h \approx 50 \times 1.732 = 86.60254037844383 \text{ feet} \][/tex]
Thus, the height of the building is approximately 86.60 feet.
The closest choice from the given options is:
[tex]\[ 50 \sqrt{3} \text{ feet} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.