Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the height of the building, we can use some basic trigonometry.
1. Identify the Given Values:
- Distance from the building: [tex]\( d = 50 \)[/tex] feet
- Angle of elevation to the top of the building: [tex]\( \theta = 60^\circ \)[/tex]
2. Understand the Relationship:
- We can use the tangent function in trigonometry, which relates the angle of elevation ([tex]\(\theta\)[/tex]), the height of the building ([tex]\(h\)[/tex]), and the distance from the building ([tex]\(d\)[/tex]).
- The tangent of an angle in a right triangle is defined as the ratio of the opposite side (height of the building) to the adjacent side (distance from the building):
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{d} \][/tex]
3. Set Up the Equation:
- Substitute the given values into the tangent relationship:
[tex]\[ \tan(60^\circ) = \frac{h}{50} \][/tex]
4. Solve for the Height ([tex]\(h\)[/tex]):
- We need the value of [tex]\(\tan(60^\circ)\)[/tex]. From trigonometric tables or identities, we know:
[tex]\[ \tan(60^\circ) = \sqrt{3} \][/tex]
- Substitute this value into the equation:
[tex]\[ \sqrt{3} = \frac{h}{50} \][/tex]
- Solve for [tex]\(h\)[/tex] by multiplying both sides by 50:
[tex]\[ h = 50 \times \sqrt{3} \][/tex]
5. Calculate the Height (numerically):
- Numerically, [tex]\(\sqrt{3} \approx 1.732\)[/tex], so:
[tex]\[ h \approx 50 \times 1.732 = 86.60254037844383 \text{ feet} \][/tex]
Thus, the height of the building is approximately 86.60 feet.
The closest choice from the given options is:
[tex]\[ 50 \sqrt{3} \text{ feet} \][/tex]
1. Identify the Given Values:
- Distance from the building: [tex]\( d = 50 \)[/tex] feet
- Angle of elevation to the top of the building: [tex]\( \theta = 60^\circ \)[/tex]
2. Understand the Relationship:
- We can use the tangent function in trigonometry, which relates the angle of elevation ([tex]\(\theta\)[/tex]), the height of the building ([tex]\(h\)[/tex]), and the distance from the building ([tex]\(d\)[/tex]).
- The tangent of an angle in a right triangle is defined as the ratio of the opposite side (height of the building) to the adjacent side (distance from the building):
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{h}{d} \][/tex]
3. Set Up the Equation:
- Substitute the given values into the tangent relationship:
[tex]\[ \tan(60^\circ) = \frac{h}{50} \][/tex]
4. Solve for the Height ([tex]\(h\)[/tex]):
- We need the value of [tex]\(\tan(60^\circ)\)[/tex]. From trigonometric tables or identities, we know:
[tex]\[ \tan(60^\circ) = \sqrt{3} \][/tex]
- Substitute this value into the equation:
[tex]\[ \sqrt{3} = \frac{h}{50} \][/tex]
- Solve for [tex]\(h\)[/tex] by multiplying both sides by 50:
[tex]\[ h = 50 \times \sqrt{3} \][/tex]
5. Calculate the Height (numerically):
- Numerically, [tex]\(\sqrt{3} \approx 1.732\)[/tex], so:
[tex]\[ h \approx 50 \times 1.732 = 86.60254037844383 \text{ feet} \][/tex]
Thus, the height of the building is approximately 86.60 feet.
The closest choice from the given options is:
[tex]\[ 50 \sqrt{3} \text{ feet} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.