Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the image coordinates of point [tex]\( D \)[/tex] after reflecting it across the line [tex]\( y = 4 \)[/tex], we need to follow a systematic approach:
### Step-by-Step Solution:
1. Identify the Original Coordinates of [tex]\( D \)[/tex]:
[tex]\( D \)[/tex] has the coordinates [tex]\( (-1, -4) \)[/tex].
2. Understand the Line of Reflection:
The line of reflection given is [tex]\( y = 4 \)[/tex].
3. Determine the Distance Between Point [tex]\( D \)[/tex] and the Reflection Line:
To reflect a point across a horizontal line, we measure the vertical distance from the point to the line of reflection.
- The y-coordinate of [tex]\( D \)[/tex] is [tex]\( -4 \)[/tex].
- The line [tex]\( y = 4 \)[/tex] is 4 units above the x-axis.
- Distance from [tex]\( D \)[/tex] to the line: [tex]\( 4 - (-4) = 4 + 4 = 8 \)[/tex] units.
4. Reflect the Point Across the Line:
To find the y-coordinate of the reflected point [tex]\( D' \)[/tex], we move this distance upwards from the line of reflection.
- Since [tex]\( D \)[/tex] is 8 units below the reflection line and reflection means equal distance on the opposite side, we add 8 units above the reflection line.
- Calculating the new y-coordinate: [tex]\( 4 (line) + 8 = 12 \)[/tex].
5. Retain the x-coordinate:
The x-coordinate does not change because the reflection is happening across a horizontal line. Therefore, [tex]\( x_{D'} = -1 \)[/tex].
6. Write the Coordinates of the Reflected Point [tex]\( D' \)[/tex]:
Thus, the coordinates of [tex]\( D' \)[/tex] are [tex]\( (-1, 12) \)[/tex].
### Conclusion:
The image coordinates of [tex]\( D' \)[/tex] after reflecting [tex]\( D(-1, -4) \)[/tex] across the line [tex]\( y = 4 \)[/tex] are [tex]\( \mathbf{(-1, 12)} \)[/tex].
Therefore, the correct answer is:
[tex]\[ D^{\prime}(-1, 12) \][/tex]
### Step-by-Step Solution:
1. Identify the Original Coordinates of [tex]\( D \)[/tex]:
[tex]\( D \)[/tex] has the coordinates [tex]\( (-1, -4) \)[/tex].
2. Understand the Line of Reflection:
The line of reflection given is [tex]\( y = 4 \)[/tex].
3. Determine the Distance Between Point [tex]\( D \)[/tex] and the Reflection Line:
To reflect a point across a horizontal line, we measure the vertical distance from the point to the line of reflection.
- The y-coordinate of [tex]\( D \)[/tex] is [tex]\( -4 \)[/tex].
- The line [tex]\( y = 4 \)[/tex] is 4 units above the x-axis.
- Distance from [tex]\( D \)[/tex] to the line: [tex]\( 4 - (-4) = 4 + 4 = 8 \)[/tex] units.
4. Reflect the Point Across the Line:
To find the y-coordinate of the reflected point [tex]\( D' \)[/tex], we move this distance upwards from the line of reflection.
- Since [tex]\( D \)[/tex] is 8 units below the reflection line and reflection means equal distance on the opposite side, we add 8 units above the reflection line.
- Calculating the new y-coordinate: [tex]\( 4 (line) + 8 = 12 \)[/tex].
5. Retain the x-coordinate:
The x-coordinate does not change because the reflection is happening across a horizontal line. Therefore, [tex]\( x_{D'} = -1 \)[/tex].
6. Write the Coordinates of the Reflected Point [tex]\( D' \)[/tex]:
Thus, the coordinates of [tex]\( D' \)[/tex] are [tex]\( (-1, 12) \)[/tex].
### Conclusion:
The image coordinates of [tex]\( D' \)[/tex] after reflecting [tex]\( D(-1, -4) \)[/tex] across the line [tex]\( y = 4 \)[/tex] are [tex]\( \mathbf{(-1, 12)} \)[/tex].
Therefore, the correct answer is:
[tex]\[ D^{\prime}(-1, 12) \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.