Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the image coordinates of point [tex]\( D \)[/tex] after reflecting it across the line [tex]\( y = 4 \)[/tex], we need to follow a systematic approach:
### Step-by-Step Solution:
1. Identify the Original Coordinates of [tex]\( D \)[/tex]:
[tex]\( D \)[/tex] has the coordinates [tex]\( (-1, -4) \)[/tex].
2. Understand the Line of Reflection:
The line of reflection given is [tex]\( y = 4 \)[/tex].
3. Determine the Distance Between Point [tex]\( D \)[/tex] and the Reflection Line:
To reflect a point across a horizontal line, we measure the vertical distance from the point to the line of reflection.
- The y-coordinate of [tex]\( D \)[/tex] is [tex]\( -4 \)[/tex].
- The line [tex]\( y = 4 \)[/tex] is 4 units above the x-axis.
- Distance from [tex]\( D \)[/tex] to the line: [tex]\( 4 - (-4) = 4 + 4 = 8 \)[/tex] units.
4. Reflect the Point Across the Line:
To find the y-coordinate of the reflected point [tex]\( D' \)[/tex], we move this distance upwards from the line of reflection.
- Since [tex]\( D \)[/tex] is 8 units below the reflection line and reflection means equal distance on the opposite side, we add 8 units above the reflection line.
- Calculating the new y-coordinate: [tex]\( 4 (line) + 8 = 12 \)[/tex].
5. Retain the x-coordinate:
The x-coordinate does not change because the reflection is happening across a horizontal line. Therefore, [tex]\( x_{D'} = -1 \)[/tex].
6. Write the Coordinates of the Reflected Point [tex]\( D' \)[/tex]:
Thus, the coordinates of [tex]\( D' \)[/tex] are [tex]\( (-1, 12) \)[/tex].
### Conclusion:
The image coordinates of [tex]\( D' \)[/tex] after reflecting [tex]\( D(-1, -4) \)[/tex] across the line [tex]\( y = 4 \)[/tex] are [tex]\( \mathbf{(-1, 12)} \)[/tex].
Therefore, the correct answer is:
[tex]\[ D^{\prime}(-1, 12) \][/tex]
### Step-by-Step Solution:
1. Identify the Original Coordinates of [tex]\( D \)[/tex]:
[tex]\( D \)[/tex] has the coordinates [tex]\( (-1, -4) \)[/tex].
2. Understand the Line of Reflection:
The line of reflection given is [tex]\( y = 4 \)[/tex].
3. Determine the Distance Between Point [tex]\( D \)[/tex] and the Reflection Line:
To reflect a point across a horizontal line, we measure the vertical distance from the point to the line of reflection.
- The y-coordinate of [tex]\( D \)[/tex] is [tex]\( -4 \)[/tex].
- The line [tex]\( y = 4 \)[/tex] is 4 units above the x-axis.
- Distance from [tex]\( D \)[/tex] to the line: [tex]\( 4 - (-4) = 4 + 4 = 8 \)[/tex] units.
4. Reflect the Point Across the Line:
To find the y-coordinate of the reflected point [tex]\( D' \)[/tex], we move this distance upwards from the line of reflection.
- Since [tex]\( D \)[/tex] is 8 units below the reflection line and reflection means equal distance on the opposite side, we add 8 units above the reflection line.
- Calculating the new y-coordinate: [tex]\( 4 (line) + 8 = 12 \)[/tex].
5. Retain the x-coordinate:
The x-coordinate does not change because the reflection is happening across a horizontal line. Therefore, [tex]\( x_{D'} = -1 \)[/tex].
6. Write the Coordinates of the Reflected Point [tex]\( D' \)[/tex]:
Thus, the coordinates of [tex]\( D' \)[/tex] are [tex]\( (-1, 12) \)[/tex].
### Conclusion:
The image coordinates of [tex]\( D' \)[/tex] after reflecting [tex]\( D(-1, -4) \)[/tex] across the line [tex]\( y = 4 \)[/tex] are [tex]\( \mathbf{(-1, 12)} \)[/tex].
Therefore, the correct answer is:
[tex]\[ D^{\prime}(-1, 12) \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.