Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the probability that a randomly selected student attended the game, given that the student is from North Beach, we need to use the concept of conditional probability. Conditional probability is the probability of an event occurring given that another event has already occurred.
The conditional probability [tex]\( P(A|B) \)[/tex] is defined as:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
In this problem:
- Event A is the event that a student attended the game.
- Event B is the event that a student is from North Beach.
We are looking for [tex]\( P(\text{Attended the game} | \text{From North Beach}) \)[/tex].
From the table:
- The total number of students from North Beach (Event B) is 200.
- The number of students from North Beach who attended the game (Event A and B) is 90.
Using these numbers, we can find the conditional probability:
[tex]\[ P(\text{Attended the game} | \text{From North Beach}) = \frac{\text{Number of students from North Beach who attended the game}}{\text{Total number of students from North Beach}} \][/tex]
Plugging in the numbers:
[tex]\[ P(\text{Attended the game} | \text{From North Beach}) = \frac{90}{200} \][/tex]
Now, we simplify this fraction:
[tex]\[ \frac{90}{200} = 0.45 \][/tex]
So, the probability that a randomly selected student attended the game, given that the student is from North Beach, is 0.45, which corresponds to option D.
Thus, the correct answer is:
D. 0.45
The conditional probability [tex]\( P(A|B) \)[/tex] is defined as:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
In this problem:
- Event A is the event that a student attended the game.
- Event B is the event that a student is from North Beach.
We are looking for [tex]\( P(\text{Attended the game} | \text{From North Beach}) \)[/tex].
From the table:
- The total number of students from North Beach (Event B) is 200.
- The number of students from North Beach who attended the game (Event A and B) is 90.
Using these numbers, we can find the conditional probability:
[tex]\[ P(\text{Attended the game} | \text{From North Beach}) = \frac{\text{Number of students from North Beach who attended the game}}{\text{Total number of students from North Beach}} \][/tex]
Plugging in the numbers:
[tex]\[ P(\text{Attended the game} | \text{From North Beach}) = \frac{90}{200} \][/tex]
Now, we simplify this fraction:
[tex]\[ \frac{90}{200} = 0.45 \][/tex]
So, the probability that a randomly selected student attended the game, given that the student is from North Beach, is 0.45, which corresponds to option D.
Thus, the correct answer is:
D. 0.45
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.