At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the [tex]$y$[/tex]-component of the weight of the box, we'll follow these steps:
1. Determine the weight of the box.
The weight [tex]$W$[/tex] of the box is given by the formula:
[tex]\[ W = m \times g \][/tex]
where:
- [tex]\(m\)[/tex] is the mass of the box,
- [tex]\(g\)[/tex] is the acceleration due to gravity.
Given:
[tex]\[ m = 5.00 \text{ kg} \][/tex]
[tex]\[ g = 9.81 \text{ m/s}^2 \][/tex]
Thus, the weight [tex]\(W\)[/tex] is:
[tex]\[ W = 5.00 \text{ kg} \times 9.81 \text{ m/s}^2 = 49.05 \text{ N} \][/tex]
2. Resolve the weight into the [tex]$y$[/tex]-component.
The [tex]$y$[/tex]-component of the weight, denoted as [tex]\( w_y \)[/tex], is the component of the weight that acts perpendicular to the plane of the ramp.
Using trigonometry, the [tex]$y$[/tex]-component can be found using the cosine of the angle of inclination:
[tex]\[ w_y = W \times \cos(\theta) \][/tex]
where:
- [tex]\( \theta \)[/tex] is the angle of the incline,
- [tex]\( W \)[/tex] is the weight of the box.
Given:
[tex]\[ \theta = 21.0^\circ \][/tex]
Thus, the [tex]$y$[/tex]-component of the weight is:
[tex]\[ w_y = 49.05 \text{ N} \times \cos(21.0^\circ) \][/tex]
3. Substitute the known values and calculate.
Using the cosine of [tex]\( 21.0^\circ \)[/tex]:
[tex]\[ \cos(21.0^\circ) \approx 0.93358 \][/tex]
Therefore:
[tex]\[ w_y = 49.05 \text{ N} \times 0.93358 \approx 45.79 \text{ N} \][/tex]
Thus, the [tex]$y$[/tex]-component of the weight of the box is approximately:
[tex]\[ w_y \approx 45.79 \text{ N} \][/tex]
So, the [tex]$y$[/tex]-component of the weight of the box is [tex]\( \boxed{45.79 \text{ N}} \)[/tex].
1. Determine the weight of the box.
The weight [tex]$W$[/tex] of the box is given by the formula:
[tex]\[ W = m \times g \][/tex]
where:
- [tex]\(m\)[/tex] is the mass of the box,
- [tex]\(g\)[/tex] is the acceleration due to gravity.
Given:
[tex]\[ m = 5.00 \text{ kg} \][/tex]
[tex]\[ g = 9.81 \text{ m/s}^2 \][/tex]
Thus, the weight [tex]\(W\)[/tex] is:
[tex]\[ W = 5.00 \text{ kg} \times 9.81 \text{ m/s}^2 = 49.05 \text{ N} \][/tex]
2. Resolve the weight into the [tex]$y$[/tex]-component.
The [tex]$y$[/tex]-component of the weight, denoted as [tex]\( w_y \)[/tex], is the component of the weight that acts perpendicular to the plane of the ramp.
Using trigonometry, the [tex]$y$[/tex]-component can be found using the cosine of the angle of inclination:
[tex]\[ w_y = W \times \cos(\theta) \][/tex]
where:
- [tex]\( \theta \)[/tex] is the angle of the incline,
- [tex]\( W \)[/tex] is the weight of the box.
Given:
[tex]\[ \theta = 21.0^\circ \][/tex]
Thus, the [tex]$y$[/tex]-component of the weight is:
[tex]\[ w_y = 49.05 \text{ N} \times \cos(21.0^\circ) \][/tex]
3. Substitute the known values and calculate.
Using the cosine of [tex]\( 21.0^\circ \)[/tex]:
[tex]\[ \cos(21.0^\circ) \approx 0.93358 \][/tex]
Therefore:
[tex]\[ w_y = 49.05 \text{ N} \times 0.93358 \approx 45.79 \text{ N} \][/tex]
Thus, the [tex]$y$[/tex]-component of the weight of the box is approximately:
[tex]\[ w_y \approx 45.79 \text{ N} \][/tex]
So, the [tex]$y$[/tex]-component of the weight of the box is [tex]\( \boxed{45.79 \text{ N}} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.