Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's carefully work through this problem step-by-step.
First, we identify the given probabilities:
- The probability that Amber's bus arrives on time is [tex]\(\frac{5}{6}\)[/tex].
- If the bus arrives on time, the probability that Amber arrives at work by 9 am is [tex]\(\frac{4}{5}\)[/tex].
- If the bus is late, the probability that Amber arrives at work by 9 am is [tex]\(\frac{3}{10}\)[/tex].
The goal is to find the probability that Amber does not arrive at work by 9 am.
We will use the law of total probability to solve this problem.
### Step 1: Calculate the probability that Amber does not arrive by 9 am if the bus is on time.
If the bus is on time, the probability that Amber arrives by 9 am is [tex]\(\frac{4}{5}\)[/tex]. Therefore, the probability that she does not arrive by 9 am if the bus is on time is:
[tex]\[ 1 - \frac{4}{5} = \frac{1}{5} \][/tex]
### Step 2: Calculate the probability that Amber does not arrive by 9 am if the bus is late.
If the bus is late, the probability that Amber arrives by 9 am is [tex]\(\frac{3}{10}\)[/tex]. Therefore, the probability that she does not arrive by 9 am if the bus is late is:
[tex]\[ 1 - \frac{3}{10} = \frac{7}{10} \][/tex]
### Step 3: Calculate the probability that the bus is late.
The probability that the bus arrives on time is [tex]\(\frac{5}{6}\)[/tex], so the probability that the bus is late is:
[tex]\[ 1 - \frac{5}{6} = \frac{1}{6} \][/tex]
### Step 4: Combine the probabilities using the law of total probability.
We calculate the total probability that Amber does not arrive by 9 am by considering both scenarios (bus on time and bus late):
[tex]\[ \text{Probability (not arrive by 9 am)} = (\text{Probability (bus on time)} \times \text{Probability (not arrive by 9 am if bus on time)}) + (\text{Probability (bus late)} \times \text{Probability (not arrive by 9 am if bus late)}) \][/tex]
Substituting the known values:
[tex]\[ \text{Probability (not arrive by 9 am)} = \left(\frac{5}{6} \times \frac{1}{5}\right) + \left(\frac{1}{6} \times \frac{7}{10}\right) \][/tex]
### Step 5: Simplify the expression.
First, simplify each term separately:
[tex]\[ \frac{5}{6} \times \frac{1}{5} = \frac{5 \times 1}{6 \times 5} = \frac{1}{6} \][/tex]
[tex]\[ \frac{1}{6} \times \frac{7}{10} = \frac{1 \times 7}{6 \times 10} = \frac{7}{60} \][/tex]
Now, add the two results together:
[tex]\[ \frac{1}{6} + \frac{7}{60} \][/tex]
To add these fractions, find a common denominator. The common denominator is 60:
[tex]\[ \frac{1}{6} = \frac{10}{60} \][/tex]
So,
[tex]\[ \frac{10}{60} + \frac{7}{60} = \frac{17}{60} \][/tex]
### Conclusion:
The probability that Amber does not arrive at work by 9 am is:
[tex]\[ \boxed{\frac{17}{60}} \][/tex]
First, we identify the given probabilities:
- The probability that Amber's bus arrives on time is [tex]\(\frac{5}{6}\)[/tex].
- If the bus arrives on time, the probability that Amber arrives at work by 9 am is [tex]\(\frac{4}{5}\)[/tex].
- If the bus is late, the probability that Amber arrives at work by 9 am is [tex]\(\frac{3}{10}\)[/tex].
The goal is to find the probability that Amber does not arrive at work by 9 am.
We will use the law of total probability to solve this problem.
### Step 1: Calculate the probability that Amber does not arrive by 9 am if the bus is on time.
If the bus is on time, the probability that Amber arrives by 9 am is [tex]\(\frac{4}{5}\)[/tex]. Therefore, the probability that she does not arrive by 9 am if the bus is on time is:
[tex]\[ 1 - \frac{4}{5} = \frac{1}{5} \][/tex]
### Step 2: Calculate the probability that Amber does not arrive by 9 am if the bus is late.
If the bus is late, the probability that Amber arrives by 9 am is [tex]\(\frac{3}{10}\)[/tex]. Therefore, the probability that she does not arrive by 9 am if the bus is late is:
[tex]\[ 1 - \frac{3}{10} = \frac{7}{10} \][/tex]
### Step 3: Calculate the probability that the bus is late.
The probability that the bus arrives on time is [tex]\(\frac{5}{6}\)[/tex], so the probability that the bus is late is:
[tex]\[ 1 - \frac{5}{6} = \frac{1}{6} \][/tex]
### Step 4: Combine the probabilities using the law of total probability.
We calculate the total probability that Amber does not arrive by 9 am by considering both scenarios (bus on time and bus late):
[tex]\[ \text{Probability (not arrive by 9 am)} = (\text{Probability (bus on time)} \times \text{Probability (not arrive by 9 am if bus on time)}) + (\text{Probability (bus late)} \times \text{Probability (not arrive by 9 am if bus late)}) \][/tex]
Substituting the known values:
[tex]\[ \text{Probability (not arrive by 9 am)} = \left(\frac{5}{6} \times \frac{1}{5}\right) + \left(\frac{1}{6} \times \frac{7}{10}\right) \][/tex]
### Step 5: Simplify the expression.
First, simplify each term separately:
[tex]\[ \frac{5}{6} \times \frac{1}{5} = \frac{5 \times 1}{6 \times 5} = \frac{1}{6} \][/tex]
[tex]\[ \frac{1}{6} \times \frac{7}{10} = \frac{1 \times 7}{6 \times 10} = \frac{7}{60} \][/tex]
Now, add the two results together:
[tex]\[ \frac{1}{6} + \frac{7}{60} \][/tex]
To add these fractions, find a common denominator. The common denominator is 60:
[tex]\[ \frac{1}{6} = \frac{10}{60} \][/tex]
So,
[tex]\[ \frac{10}{60} + \frac{7}{60} = \frac{17}{60} \][/tex]
### Conclusion:
The probability that Amber does not arrive at work by 9 am is:
[tex]\[ \boxed{\frac{17}{60}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.