At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the x-component of the weight of the box on a ramp that is inclined at [tex]\(15^{\circ}\)[/tex], we need to consider the component of the gravitational force parallel to the surface of the ramp. Follow these steps:
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.