Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the x-component of the weight of the box on a ramp that is inclined at [tex]\(15^{\circ}\)[/tex], we need to consider the component of the gravitational force parallel to the surface of the ramp. Follow these steps:
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.