At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the x-component of the weight of the box on a ramp that is inclined at [tex]\(15^{\circ}\)[/tex], we need to consider the component of the gravitational force parallel to the surface of the ramp. Follow these steps:
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.