Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the x-component of the weight of the box on a ramp that is inclined at [tex]\(15^{\circ}\)[/tex], we need to consider the component of the gravitational force parallel to the surface of the ramp. Follow these steps:
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
1. Determine the mass and angle:
- Mass of the box, [tex]\(m = 60.0 \, \text{kg}\)[/tex]
- Inclination angle, [tex]\(\theta = 15.0^{\circ}\)[/tex]
2. Understand the gravitational force:
- The gravitational force acts vertically downward and can be calculated using the formula:
[tex]\[ F_g = m \times g \][/tex]
where [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex] is the acceleration due to gravity.
3. Calculate the gravitational force:
[tex]\[ F_g = 60.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 588 \, \text{N} \][/tex]
4. Resolve the gravitational force into components:
- The x-component of the gravitational force (parallel to the ramp) can be found using:
[tex]\[ F_{gx} = F_g \times \sin(\theta) \][/tex]
where [tex]\(\theta\)[/tex] must be in radians for precise calculations.
5. Convert the angle to radians:
- Since [tex]\(1 \, \text{degree} = \frac{\pi}{180} \, \text{radians}\)[/tex], convert the angle:
[tex]\[ \theta \, (\text{radians}) = 15.0 \times \frac{\pi}{180} \approx 0.2618 \, \text{radians} \][/tex]
6. Calculate the x-component of the gravitational force:
- Now plug in the values:
[tex]\[ F_{gx} = 588 \, \text{N} \times \sin(0.2618) \approx 588 \times 0.2588 \approx 152.19 \, \text{N} \][/tex]
So, the x-component of the weight of the box on the inclined ramp is [tex]\( \boxed{152.19 \, \text{N}} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.