At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To understand the effect of decreasing current on the force experienced by a conductor, we need to consider the relationship between the force and current. The force [tex]\( F \)[/tex] experienced by a conductor in a magnetic field is given by the formula:
[tex]\[ F = BIL \sin(\theta) \][/tex]
In this formula:
- [tex]\( F \)[/tex] is the force
- [tex]\( B \)[/tex] is the magnetic field strength
- [tex]\( I \)[/tex] is the current
- [tex]\( L \)[/tex] is the length of the conductor
- [tex]\( \theta \)[/tex] is the angle between the magnetic field and the direction of the current
Given that the direction of the current does not change, the angle [tex]\( \theta \)[/tex] and the values of [tex]\( B \)[/tex] and [tex]\( L \)[/tex] remain constant. Therefore, we focus on the relationship between [tex]\( F \)[/tex] and [tex]\( I \)[/tex].
If the amount of current [tex]\( I \)[/tex] decreases while all other factors [tex]\( B \)[/tex], [tex]\( L \)[/tex], and [tex]\( \theta \)[/tex] remain unchanged, the product [tex]\( BIL \sin(\theta) \)[/tex] also decreases. Hence, the force [tex]\( F \)[/tex] experienced by the conductor will decrease.
Therefore, the correct answer is:
B. becomes weaker
[tex]\[ F = BIL \sin(\theta) \][/tex]
In this formula:
- [tex]\( F \)[/tex] is the force
- [tex]\( B \)[/tex] is the magnetic field strength
- [tex]\( I \)[/tex] is the current
- [tex]\( L \)[/tex] is the length of the conductor
- [tex]\( \theta \)[/tex] is the angle between the magnetic field and the direction of the current
Given that the direction of the current does not change, the angle [tex]\( \theta \)[/tex] and the values of [tex]\( B \)[/tex] and [tex]\( L \)[/tex] remain constant. Therefore, we focus on the relationship between [tex]\( F \)[/tex] and [tex]\( I \)[/tex].
If the amount of current [tex]\( I \)[/tex] decreases while all other factors [tex]\( B \)[/tex], [tex]\( L \)[/tex], and [tex]\( \theta \)[/tex] remain unchanged, the product [tex]\( BIL \sin(\theta) \)[/tex] also decreases. Hence, the force [tex]\( F \)[/tex] experienced by the conductor will decrease.
Therefore, the correct answer is:
B. becomes weaker
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.