Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the given problem step by step:
### Question 1: The coefficient of the greatest common factor (GCF) of the polynomial expression
To find the coefficient of the GCF of the polynomial expression [tex]\(54 x^2 y^3 + 18 x y^5 - 36 y^4\)[/tex], we need to find the greatest common divisor (GCD) of the coefficients of the terms:
- The coefficients are:
- [tex]\(54\)[/tex]
- [tex]\(18\)[/tex]
- [tex]\(-36\)[/tex]
1. First, find the GCD of [tex]\(54\)[/tex] and [tex]\(18\)[/tex]:
- The divisors of [tex]\(54\)[/tex] are [tex]\(1, 2, 3, 6, 9, 18, 27, 54\)[/tex].
- The divisors of [tex]\(18\)[/tex] are [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The common divisors are [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The greatest common divisor is [tex]\(18\)[/tex].
2. Next, find the GCD of [tex]\(18\)[/tex] and [tex]\(-36\)[/tex]:
- The divisors of [tex]\(-36\)[/tex] are [tex]\(1, 2, 3, 4, 6, 9, 12, 18, 36\)[/tex] (and their negatives).
- The common divisors here again include [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The greatest common divisor remains [tex]\(18\)[/tex].
Therefore, the coefficient of the greatest common factor of the polynomial expression is [tex]\(18\)[/tex].
### Question 2: The degree of the polynomial expression
To determine the degree of the polynomial expression [tex]\(54 x^2 y^3 + 18 x y^5 - 36 y^4\)[/tex], we need to consider the sum of the degrees of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for each term and select the highest sum:
1. For the term [tex]\(54 x^2 y^3\)[/tex]:
- The degree of [tex]\(x^2\)[/tex] is [tex]\(2\)[/tex].
- The degree of [tex]\(y^3\)[/tex] is [tex]\(3\)[/tex].
- The total degree is [tex]\(2 + 3 = 5\)[/tex].
2. For the term [tex]\(18 x y^5\)[/tex]:
- The degree of [tex]\(x\)[/tex] is [tex]\(1\)[/tex].
- The degree of [tex]\(y^5\)[/tex] is [tex]\(5\)[/tex].
- The total degree is [tex]\(1 + 5 = 6\)[/tex].
3. For the term [tex]\(-36 y^4\)[/tex]:
- The degree of [tex]\(y^4\)[/tex] is [tex]\(4\)[/tex].
- There is no [tex]\(x\)[/tex] term, so its degree is [tex]\(0\)[/tex].
- The total degree is [tex]\(0 + 4 = 4\)[/tex].
The degree of the polynomial expression is the highest among these values, which is [tex]\(6\)[/tex].
### Final Answers:
1. The coefficient of the greatest common factor of the polynomial expression is [tex]\(\boxed{18}\)[/tex].
2. The degree of the polynomial expression is [tex]\(\boxed{6}\)[/tex].
### Question 1: The coefficient of the greatest common factor (GCF) of the polynomial expression
To find the coefficient of the GCF of the polynomial expression [tex]\(54 x^2 y^3 + 18 x y^5 - 36 y^4\)[/tex], we need to find the greatest common divisor (GCD) of the coefficients of the terms:
- The coefficients are:
- [tex]\(54\)[/tex]
- [tex]\(18\)[/tex]
- [tex]\(-36\)[/tex]
1. First, find the GCD of [tex]\(54\)[/tex] and [tex]\(18\)[/tex]:
- The divisors of [tex]\(54\)[/tex] are [tex]\(1, 2, 3, 6, 9, 18, 27, 54\)[/tex].
- The divisors of [tex]\(18\)[/tex] are [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The common divisors are [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The greatest common divisor is [tex]\(18\)[/tex].
2. Next, find the GCD of [tex]\(18\)[/tex] and [tex]\(-36\)[/tex]:
- The divisors of [tex]\(-36\)[/tex] are [tex]\(1, 2, 3, 4, 6, 9, 12, 18, 36\)[/tex] (and their negatives).
- The common divisors here again include [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The greatest common divisor remains [tex]\(18\)[/tex].
Therefore, the coefficient of the greatest common factor of the polynomial expression is [tex]\(18\)[/tex].
### Question 2: The degree of the polynomial expression
To determine the degree of the polynomial expression [tex]\(54 x^2 y^3 + 18 x y^5 - 36 y^4\)[/tex], we need to consider the sum of the degrees of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] for each term and select the highest sum:
1. For the term [tex]\(54 x^2 y^3\)[/tex]:
- The degree of [tex]\(x^2\)[/tex] is [tex]\(2\)[/tex].
- The degree of [tex]\(y^3\)[/tex] is [tex]\(3\)[/tex].
- The total degree is [tex]\(2 + 3 = 5\)[/tex].
2. For the term [tex]\(18 x y^5\)[/tex]:
- The degree of [tex]\(x\)[/tex] is [tex]\(1\)[/tex].
- The degree of [tex]\(y^5\)[/tex] is [tex]\(5\)[/tex].
- The total degree is [tex]\(1 + 5 = 6\)[/tex].
3. For the term [tex]\(-36 y^4\)[/tex]:
- The degree of [tex]\(y^4\)[/tex] is [tex]\(4\)[/tex].
- There is no [tex]\(x\)[/tex] term, so its degree is [tex]\(0\)[/tex].
- The total degree is [tex]\(0 + 4 = 4\)[/tex].
The degree of the polynomial expression is the highest among these values, which is [tex]\(6\)[/tex].
### Final Answers:
1. The coefficient of the greatest common factor of the polynomial expression is [tex]\(\boxed{18}\)[/tex].
2. The degree of the polynomial expression is [tex]\(\boxed{6}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.