Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex], we'll use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]
Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the identified values:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).
Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]
[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the root of the equation is:
[tex]\[ x = -2 \][/tex]
Since the discriminant is 0, both roots are the same:
[tex]\[ x_1 = x_2 = -2 \][/tex]
In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]
Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the identified values:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).
Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]
[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the root of the equation is:
[tex]\[ x = -2 \][/tex]
Since the discriminant is 0, both roots are the same:
[tex]\[ x_1 = x_2 = -2 \][/tex]
In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.