Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex], we'll use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]
Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the identified values:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).
Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]
[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the root of the equation is:
[tex]\[ x = -2 \][/tex]
Since the discriminant is 0, both roots are the same:
[tex]\[ x_1 = x_2 = -2 \][/tex]
In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]
Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the identified values:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).
Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]
[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the root of the equation is:
[tex]\[ x = -2 \][/tex]
Since the discriminant is 0, both roots are the same:
[tex]\[ x_1 = x_2 = -2 \][/tex]
In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.