Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex], we'll use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]
Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the identified values:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).
Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]
[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the root of the equation is:
[tex]\[ x = -2 \][/tex]
Since the discriminant is 0, both roots are the same:
[tex]\[ x_1 = x_2 = -2 \][/tex]
In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Let's identify the coefficients from the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]. In our equation:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = 4\)[/tex]
Next, we calculate the discriminant, [tex]\(\Delta\)[/tex], which is found using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the identified values:
[tex]\[ \Delta = 4^2 - 4 \cdot 1 \cdot 4 \][/tex]
[tex]\[ \Delta = 16 - 16 \][/tex]
[tex]\[ \Delta = 0 \][/tex]
The discriminant, [tex]\(\Delta\)[/tex], is 0. This means there is exactly one real root (a repeated root).
Now, we substitute [tex]\(\Delta = 0\)[/tex] back into the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{0}}{2a} \][/tex]
[tex]\[ x = \frac{-4 \pm 0}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]
Therefore, the root of the equation is:
[tex]\[ x = -2 \][/tex]
Since the discriminant is 0, both roots are the same:
[tex]\[ x_1 = x_2 = -2 \][/tex]
In summary, the solutions to the quadratic equation [tex]\(x^2 + 4x + 4 = 0\)[/tex] are both [tex]\(-2\)[/tex]. The discriminant is [tex]\(0\)[/tex], and the roots are [tex]\(-2\)[/tex] and [tex]\(-2\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.