Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the given exponential equation step by step:
The given equation is:
[tex]\[ e^{3x - 4} \cdot e^{-x} = 2e \][/tex]
First, we simplify the left-hand side. We know that when multiplying exponential expressions with the same base, we add the exponents:
[tex]\[ e^{3x - 4} \cdot e^{-x} = e^{(3x - 4) + (-x)} = e^{3x - 4 - x} = e^{2x - 4} \][/tex]
Now, our equation simplifies to:
[tex]\[ e^{2x - 4} = 2e \][/tex]
Next, we want to isolate the exponential expression. Since the right-hand side has an [tex]\(e\)[/tex], we can divide both sides by [tex]\(e\)[/tex]:
[tex]\[ e^{2x - 4} = 2e \][/tex]
[tex]\[ e^{2x - 4} / e = 2e / e \][/tex]
[tex]\[ e^{2x - 4 - 1} = 2 \][/tex]
[tex]\[ e^{2x - 5} = 2 \][/tex]
To solve for [tex]\(x\)[/tex], we take the natural logarithm (ln) of both sides of the equation. Applying the natural logarithm to both sides, we get:
[tex]\[ \ln(e^{2x - 5}) = \ln(2) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex], we simplify the left-hand side:
[tex]\[ 2x - 5 = \ln(2) \][/tex]
Now, we solve for [tex]\(x\)[/tex] by isolating it on one side of the equation. First, add 5 to both sides:
[tex]\[ 2x = \ln(2) + 5 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{\ln(2) + 5}{2} \][/tex]
We know that [tex]\(\ln(2) \approx 0.693\)[/tex]:
[tex]\[ x = \frac{0.693 + 5}{2} = \frac{5.693}{2} \approx 2.847 \][/tex]
Therefore, the solution to the equation, correct to the nearest thousandth, is:
[tex]\[ x \approx 2.847 \][/tex]
The given equation is:
[tex]\[ e^{3x - 4} \cdot e^{-x} = 2e \][/tex]
First, we simplify the left-hand side. We know that when multiplying exponential expressions with the same base, we add the exponents:
[tex]\[ e^{3x - 4} \cdot e^{-x} = e^{(3x - 4) + (-x)} = e^{3x - 4 - x} = e^{2x - 4} \][/tex]
Now, our equation simplifies to:
[tex]\[ e^{2x - 4} = 2e \][/tex]
Next, we want to isolate the exponential expression. Since the right-hand side has an [tex]\(e\)[/tex], we can divide both sides by [tex]\(e\)[/tex]:
[tex]\[ e^{2x - 4} = 2e \][/tex]
[tex]\[ e^{2x - 4} / e = 2e / e \][/tex]
[tex]\[ e^{2x - 4 - 1} = 2 \][/tex]
[tex]\[ e^{2x - 5} = 2 \][/tex]
To solve for [tex]\(x\)[/tex], we take the natural logarithm (ln) of both sides of the equation. Applying the natural logarithm to both sides, we get:
[tex]\[ \ln(e^{2x - 5}) = \ln(2) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex], we simplify the left-hand side:
[tex]\[ 2x - 5 = \ln(2) \][/tex]
Now, we solve for [tex]\(x\)[/tex] by isolating it on one side of the equation. First, add 5 to both sides:
[tex]\[ 2x = \ln(2) + 5 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{\ln(2) + 5}{2} \][/tex]
We know that [tex]\(\ln(2) \approx 0.693\)[/tex]:
[tex]\[ x = \frac{0.693 + 5}{2} = \frac{5.693}{2} \approx 2.847 \][/tex]
Therefore, the solution to the equation, correct to the nearest thousandth, is:
[tex]\[ x \approx 2.847 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.