Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the given exponential equation step by step:
The given equation is:
[tex]\[ e^{3x - 4} \cdot e^{-x} = 2e \][/tex]
First, we simplify the left-hand side. We know that when multiplying exponential expressions with the same base, we add the exponents:
[tex]\[ e^{3x - 4} \cdot e^{-x} = e^{(3x - 4) + (-x)} = e^{3x - 4 - x} = e^{2x - 4} \][/tex]
Now, our equation simplifies to:
[tex]\[ e^{2x - 4} = 2e \][/tex]
Next, we want to isolate the exponential expression. Since the right-hand side has an [tex]\(e\)[/tex], we can divide both sides by [tex]\(e\)[/tex]:
[tex]\[ e^{2x - 4} = 2e \][/tex]
[tex]\[ e^{2x - 4} / e = 2e / e \][/tex]
[tex]\[ e^{2x - 4 - 1} = 2 \][/tex]
[tex]\[ e^{2x - 5} = 2 \][/tex]
To solve for [tex]\(x\)[/tex], we take the natural logarithm (ln) of both sides of the equation. Applying the natural logarithm to both sides, we get:
[tex]\[ \ln(e^{2x - 5}) = \ln(2) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex], we simplify the left-hand side:
[tex]\[ 2x - 5 = \ln(2) \][/tex]
Now, we solve for [tex]\(x\)[/tex] by isolating it on one side of the equation. First, add 5 to both sides:
[tex]\[ 2x = \ln(2) + 5 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{\ln(2) + 5}{2} \][/tex]
We know that [tex]\(\ln(2) \approx 0.693\)[/tex]:
[tex]\[ x = \frac{0.693 + 5}{2} = \frac{5.693}{2} \approx 2.847 \][/tex]
Therefore, the solution to the equation, correct to the nearest thousandth, is:
[tex]\[ x \approx 2.847 \][/tex]
The given equation is:
[tex]\[ e^{3x - 4} \cdot e^{-x} = 2e \][/tex]
First, we simplify the left-hand side. We know that when multiplying exponential expressions with the same base, we add the exponents:
[tex]\[ e^{3x - 4} \cdot e^{-x} = e^{(3x - 4) + (-x)} = e^{3x - 4 - x} = e^{2x - 4} \][/tex]
Now, our equation simplifies to:
[tex]\[ e^{2x - 4} = 2e \][/tex]
Next, we want to isolate the exponential expression. Since the right-hand side has an [tex]\(e\)[/tex], we can divide both sides by [tex]\(e\)[/tex]:
[tex]\[ e^{2x - 4} = 2e \][/tex]
[tex]\[ e^{2x - 4} / e = 2e / e \][/tex]
[tex]\[ e^{2x - 4 - 1} = 2 \][/tex]
[tex]\[ e^{2x - 5} = 2 \][/tex]
To solve for [tex]\(x\)[/tex], we take the natural logarithm (ln) of both sides of the equation. Applying the natural logarithm to both sides, we get:
[tex]\[ \ln(e^{2x - 5}) = \ln(2) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^y) = y\)[/tex], we simplify the left-hand side:
[tex]\[ 2x - 5 = \ln(2) \][/tex]
Now, we solve for [tex]\(x\)[/tex] by isolating it on one side of the equation. First, add 5 to both sides:
[tex]\[ 2x = \ln(2) + 5 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{\ln(2) + 5}{2} \][/tex]
We know that [tex]\(\ln(2) \approx 0.693\)[/tex]:
[tex]\[ x = \frac{0.693 + 5}{2} = \frac{5.693}{2} \approx 2.847 \][/tex]
Therefore, the solution to the equation, correct to the nearest thousandth, is:
[tex]\[ x \approx 2.847 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.