Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's break down the solution step-by-step to find the probability that both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occur, given that [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are exhaustive events.
1. Understanding Exhaustive Events:
- Exhaustive events are defined as a set of events in a sample space such that at least one of these events must occur. The occurrence of these events covers the entire sample space.
- Mathematically, if [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are exhaustive events, then [tex]\( p(A \cup B) = 1 \)[/tex]. This means the probability that either [tex]\( A \)[/tex] or [tex]\( B \)[/tex] or both occur is 1.
2. Given Probabilities:
- [tex]\( p(A) = 0.7 \)[/tex]
- [tex]\( p(B) = 0.4 \)[/tex]
3. Applying the Principle for Exhaustive Events:
- Since [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are exhaustive:
[tex]\[ p(A \cup B) = 1 \][/tex]
- We use the formula for the probability of the union of two events:
[tex]\[ p(A \cup B) = p(A) + p(B) - p(A \cap B) \][/tex]
4. Substituting the Given Values:
- Substituting [tex]\( p(A \cup B) = 1 \)[/tex]:
[tex]\[ 1 = p(A) + p(B) - p(A \cap B) \][/tex]
[tex]\[ 1 = 0.7 + 0.4 - p(A \cap B) \][/tex]
5. Solving for [tex]\( p(A \cap B) \)[/tex]:
- Rearrange the equation to solve for [tex]\( p(A \cap B) \)[/tex]:
[tex]\[ 1 = 1.1 - p(A \cap B) \][/tex]
[tex]\[ p(A \cap B) = 1.1 - 1 \][/tex]
[tex]\[ p(A \cap B) = 0.1 \][/tex]
6. Conclusion:
- The probability that both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occur is [tex]\( 0.1 \)[/tex].
Therefore, the answer is:
[tex]\[ \boxed{0.1} \][/tex]
From the given options:
a) 0.3
b) 0.1
c) 1
d) can't be determined
The correct answer is:
b) 0.1
1. Understanding Exhaustive Events:
- Exhaustive events are defined as a set of events in a sample space such that at least one of these events must occur. The occurrence of these events covers the entire sample space.
- Mathematically, if [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are exhaustive events, then [tex]\( p(A \cup B) = 1 \)[/tex]. This means the probability that either [tex]\( A \)[/tex] or [tex]\( B \)[/tex] or both occur is 1.
2. Given Probabilities:
- [tex]\( p(A) = 0.7 \)[/tex]
- [tex]\( p(B) = 0.4 \)[/tex]
3. Applying the Principle for Exhaustive Events:
- Since [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are exhaustive:
[tex]\[ p(A \cup B) = 1 \][/tex]
- We use the formula for the probability of the union of two events:
[tex]\[ p(A \cup B) = p(A) + p(B) - p(A \cap B) \][/tex]
4. Substituting the Given Values:
- Substituting [tex]\( p(A \cup B) = 1 \)[/tex]:
[tex]\[ 1 = p(A) + p(B) - p(A \cap B) \][/tex]
[tex]\[ 1 = 0.7 + 0.4 - p(A \cap B) \][/tex]
5. Solving for [tex]\( p(A \cap B) \)[/tex]:
- Rearrange the equation to solve for [tex]\( p(A \cap B) \)[/tex]:
[tex]\[ 1 = 1.1 - p(A \cap B) \][/tex]
[tex]\[ p(A \cap B) = 1.1 - 1 \][/tex]
[tex]\[ p(A \cap B) = 0.1 \][/tex]
6. Conclusion:
- The probability that both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occur is [tex]\( 0.1 \)[/tex].
Therefore, the answer is:
[tex]\[ \boxed{0.1} \][/tex]
From the given options:
a) 0.3
b) 0.1
c) 1
d) can't be determined
The correct answer is:
b) 0.1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.