At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let’s work through the problem step-by-step.
### Part I: Calculating the Slope
To determine the slope [tex]\( m \)[/tex] of the line passing through the points [tex]\((6, 5)\)[/tex] and [tex]\((3, 1)\)[/tex], we use the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1) = (6, 5)\)[/tex] and [tex]\((x_2, y_2) = (3, 1)\)[/tex].
Substituting these values into the slope formula:
[tex]\[ m = \frac{1 - 5}{3 - 6} = \frac{-4}{-3} = \frac{4}{3} \][/tex]
So, the slope of the line is:
[tex]\[ m = \frac{4}{3} \][/tex]
### Part II: Writing Two Point-Slope Form Equations
The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We will write two equations using the given points [tex]\((6, 5)\)[/tex] and [tex]\((3, 1)\)[/tex].
#### Using the point [tex]\((6, 5)\)[/tex]:
Substitute [tex]\( x_1 = 6 \)[/tex], [tex]\( y_1 = 5 \)[/tex], and [tex]\( m = \frac{4}{3} \)[/tex] into the point-slope form:
[tex]\[ y - 5 = \frac{4}{3}(x - 6) \][/tex]
#### Using the point [tex]\((3, 1)\)[/tex]:
Substitute [tex]\( x_2 = 3 \)[/tex], [tex]\( y_2 = 1 \)[/tex], and [tex]\( m = \frac{4}{3} \)[/tex] into the point-slope form:
[tex]\[ y - 1 = \frac{4}{3}(x - 3) \][/tex]
### Summary:
1. Slope: [tex]\( m = \frac{4}{3} \)[/tex]
2. Point-slope equation using point [tex]\((6, 5)\)[/tex]:
[tex]\[ y - 5 = \frac{4}{3}(x - 6) \][/tex]
3. Point-slope equation using point [tex]\((3, 1)\)[/tex]:
[tex]\[ y - 1 = \frac{4}{3}(x - 3) \][/tex]
These are the detailed steps to calculate the slope and to write the two point-slope form equations for the line passing through the given points.
### Part I: Calculating the Slope
To determine the slope [tex]\( m \)[/tex] of the line passing through the points [tex]\((6, 5)\)[/tex] and [tex]\((3, 1)\)[/tex], we use the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1) = (6, 5)\)[/tex] and [tex]\((x_2, y_2) = (3, 1)\)[/tex].
Substituting these values into the slope formula:
[tex]\[ m = \frac{1 - 5}{3 - 6} = \frac{-4}{-3} = \frac{4}{3} \][/tex]
So, the slope of the line is:
[tex]\[ m = \frac{4}{3} \][/tex]
### Part II: Writing Two Point-Slope Form Equations
The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We will write two equations using the given points [tex]\((6, 5)\)[/tex] and [tex]\((3, 1)\)[/tex].
#### Using the point [tex]\((6, 5)\)[/tex]:
Substitute [tex]\( x_1 = 6 \)[/tex], [tex]\( y_1 = 5 \)[/tex], and [tex]\( m = \frac{4}{3} \)[/tex] into the point-slope form:
[tex]\[ y - 5 = \frac{4}{3}(x - 6) \][/tex]
#### Using the point [tex]\((3, 1)\)[/tex]:
Substitute [tex]\( x_2 = 3 \)[/tex], [tex]\( y_2 = 1 \)[/tex], and [tex]\( m = \frac{4}{3} \)[/tex] into the point-slope form:
[tex]\[ y - 1 = \frac{4}{3}(x - 3) \][/tex]
### Summary:
1. Slope: [tex]\( m = \frac{4}{3} \)[/tex]
2. Point-slope equation using point [tex]\((6, 5)\)[/tex]:
[tex]\[ y - 5 = \frac{4}{3}(x - 6) \][/tex]
3. Point-slope equation using point [tex]\((3, 1)\)[/tex]:
[tex]\[ y - 1 = \frac{4}{3}(x - 3) \][/tex]
These are the detailed steps to calculate the slope and to write the two point-slope form equations for the line passing through the given points.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.