Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

You download eight songs onto a music player. If you play three of the songs using the random shuffle option, how many ways can the sequence of songs be played?

Note: [tex]${}_nP_r = \frac{n!}{(n-r)!}$[/tex]


Sagot :

To determine the number of ways to play three songs out of a total of eight in sequence, we need to calculate the number of permutations of 8 items taken 3 at a time.

The formula for permutations [tex]\( P(n, r) \)[/tex] is given by:

[tex]\[ P(n, r) = \frac{n!}{(n-r)!} \][/tex]

Here, [tex]\( n = 8 \)[/tex] (the total number of songs) and [tex]\( r = 3 \)[/tex] (the number of songs to be played in sequence).

Let's insert the values into the formula:

[tex]\[ P(8, 3) = \frac{8!}{(8-3)!} \][/tex]

This simplifies to:

[tex]\[ P(8, 3) = \frac{8!}{5!} \][/tex]

Since [tex]\( 8! \)[/tex] (8 factorial) is the product of all positive integers up to 8, and [tex]\( 5! \)[/tex] (5 factorial) is the product of all positive integers up to 5, we can write it as:

[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]

[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 \][/tex]

Now, [tex]\( 5! \)[/tex] (the product of the numbers from 5 down to 1) will cancel out from both the numerator and the denominator, leaving us with:

[tex]\[ P(8, 3) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 \times 4 \times 3 \times 2 \times 1} = 8 \times 7 \times 6 \][/tex]

So we calculate:

[tex]\[ 8 \times 7 = 56 \][/tex]

[tex]\[ 56 \times 6 = 336 \][/tex]

Therefore, the number of ways to play three of the eight songs in sequence is:

[tex]\[ \boxed{336} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.