Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the mass of the second train, we can use the principle of conservation of momentum. The principle states that the total momentum before a collision is equal to the total momentum after the collision, provided no external forces act on the system.
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.