Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the mass of the second train, we can use the principle of conservation of momentum. The principle states that the total momentum before a collision is equal to the total momentum after the collision, provided no external forces act on the system.
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.