Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the mass of the second train, we can use the principle of conservation of momentum. The principle states that the total momentum before a collision is equal to the total momentum after the collision, provided no external forces act on the system.
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
Let's break this down step by step:
1. Identify the known quantities:
- Mass of the first train ([tex]\( m_1 \)[/tex]): [tex]\( 5,000 \)[/tex] kg
- Initial velocity of the first train ([tex]\( v_1 \)[/tex]): [tex]\( 100 \)[/tex] m/s
- Combined velocity after collision ([tex]\( v_{\text{final}} \)[/tex]): [tex]\( 50 \)[/tex] m/s
2. Define the unknown quantity:
- Mass of the second train ([tex]\( m_2 \)[/tex])
3. Write the conservation of momentum equation:
The equation for the conservation of momentum before and after the collision is:
[tex]\[ m_1 \cdot v_1 = (m_1 + m_2) \cdot v_{\text{final}} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ 5000 \ \text{kg} \cdot 100 \ \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
5. Solve for the mass of the second train ([tex]\( m_2 \)[/tex]):
[tex]\[ 500,000 \ \text{kg} \cdot \text{m/s} = (5000 \ \text{kg} + m_2) \cdot 50 \ \text{m/s} \][/tex]
6. Divide both sides by [tex]\( 50 \ \text{m/s} \)[/tex] to isolate [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} = 5000 \ \text{kg} + m_2 \][/tex]
7. Subtract the mass of the first train from both sides to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ 10,000 \ \text{kg} - 5000 \ \text{kg} = m_2 \][/tex]
[tex]\[ m_2 = 5000 \ \text{kg} \][/tex]
Therefore, the mass of the second train is [tex]\( 5,000 \)[/tex] kg.
The correct answer is:
D. [tex]$5,000 kg$[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.