Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the given ratios could be the ratio between the lengths of the two legs of a 30-60-90 triangle, let’s first recall the properties of a 30-60-90 triangle. In such a triangle, the sides are in a specific ratio relative to each other:
- The hypotenuse is twice the length of the shorter leg.
- The length of the longer leg is [tex]\(\sqrt{3}\)[/tex] times the length of the shorter leg.
Let’s test each option to see if it matches the required ratio.
A. [tex]\(2 \sqrt{3}: 6\)[/tex]
[tex]\[ \frac{2\sqrt{3}}{6} = \frac{2 \cdot \sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{3} \quad \text{(This ratio does not simplify to } 1:\sqrt{3} \text{)} \][/tex]
So, option A is incorrect.
B. [tex]\(\sqrt{2}: \sqrt{3}\)[/tex]
[tex]\[ \text{This does not match the } 1: \sqrt{3} \text{ ratio since we need the shorter leg and the longer leg to be in a specific ratio of } 1:\sqrt{3}. \][/tex]
So, option B is incorrect.
C. [tex]\(1: \sqrt{3}\)[/tex]
[tex]\[ \text{This ratio matches exactly with the required ratio of the lengths of the shorter leg to the longer leg in a } 30-60-90 \text{ triangle}. \][/tex]
So, option C is correct.
D. [tex]\(1: \sqrt{2}\)[/tex]
[tex]\[ \text{This does not match the required ratio of } 1: \sqrt{3}. \][/tex]
So, option D is incorrect.
E. [tex]\(\sqrt{2}: \sqrt{2}\)[/tex]
[tex]\[ \frac{\sqrt{2}}{\sqrt{2}} = 1:1 \quad \text{(This is clearly not the ratio between the side lengths of a } 30-60-90 \text{ triangle)}. \][/tex]
So, option E is incorrect.
Thus, the only correct option is:
C. [tex]\(1: \sqrt{3}\)[/tex]
- The hypotenuse is twice the length of the shorter leg.
- The length of the longer leg is [tex]\(\sqrt{3}\)[/tex] times the length of the shorter leg.
Let’s test each option to see if it matches the required ratio.
A. [tex]\(2 \sqrt{3}: 6\)[/tex]
[tex]\[ \frac{2\sqrt{3}}{6} = \frac{2 \cdot \sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{3} \quad \text{(This ratio does not simplify to } 1:\sqrt{3} \text{)} \][/tex]
So, option A is incorrect.
B. [tex]\(\sqrt{2}: \sqrt{3}\)[/tex]
[tex]\[ \text{This does not match the } 1: \sqrt{3} \text{ ratio since we need the shorter leg and the longer leg to be in a specific ratio of } 1:\sqrt{3}. \][/tex]
So, option B is incorrect.
C. [tex]\(1: \sqrt{3}\)[/tex]
[tex]\[ \text{This ratio matches exactly with the required ratio of the lengths of the shorter leg to the longer leg in a } 30-60-90 \text{ triangle}. \][/tex]
So, option C is correct.
D. [tex]\(1: \sqrt{2}\)[/tex]
[tex]\[ \text{This does not match the required ratio of } 1: \sqrt{3}. \][/tex]
So, option D is incorrect.
E. [tex]\(\sqrt{2}: \sqrt{2}\)[/tex]
[tex]\[ \frac{\sqrt{2}}{\sqrt{2}} = 1:1 \quad \text{(This is clearly not the ratio between the side lengths of a } 30-60-90 \text{ triangle)}. \][/tex]
So, option E is incorrect.
Thus, the only correct option is:
C. [tex]\(1: \sqrt{3}\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.