Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's break down the given expression [tex]\( 196q^2 - 1 \)[/tex] step-by-step.
1. Identify the constants and variables:
- The coefficient of [tex]\( q^2 \)[/tex] is 196, which is a constant.
- [tex]\( q \)[/tex] is the variable.
- The entire term [tex]\( 196q^2 \)[/tex] is a quadratic term (highest power of [tex]\( q \)[/tex] is 2).
- The constant term is -1.
2. Check for special forms:
- Notice that [tex]\( 196q^2 - 1 \)[/tex] resembles the difference of squares formula. The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
3. Recognize the squares:
- Here, [tex]\( 196q^2 \)[/tex] can be written as [tex]\( (14q)^2 \)[/tex] because [tex]\( 196 = 14^2 \)[/tex].
- Similarly, the number 1 is [tex]\( 1^2 \)[/tex].
4. Apply the difference of squares formula:
- If we set [tex]\( a = 14q \)[/tex] and [tex]\( b = 1 \)[/tex], then [tex]\( 196q^2 - 1 \)[/tex] becomes [tex]\( (14q)^2 - 1^2 \)[/tex].
- Applying the difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex], we get:
[tex]\[ (14q)^2 - 1^2 = (14q - 1)(14q + 1) \][/tex]
5. Factored form:
- Thus, the expression can be factored into:
[tex]\[ 196q^2 - 1 = (14q - 1)(14q + 1) \][/tex]
In conclusion, the expression [tex]\( 196q^2 - 1 \)[/tex] can be factored as:
[tex]\[ 196q^2 - 1 = (14q - 1)(14q + 1) \][/tex]
1. Identify the constants and variables:
- The coefficient of [tex]\( q^2 \)[/tex] is 196, which is a constant.
- [tex]\( q \)[/tex] is the variable.
- The entire term [tex]\( 196q^2 \)[/tex] is a quadratic term (highest power of [tex]\( q \)[/tex] is 2).
- The constant term is -1.
2. Check for special forms:
- Notice that [tex]\( 196q^2 - 1 \)[/tex] resembles the difference of squares formula. The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].
3. Recognize the squares:
- Here, [tex]\( 196q^2 \)[/tex] can be written as [tex]\( (14q)^2 \)[/tex] because [tex]\( 196 = 14^2 \)[/tex].
- Similarly, the number 1 is [tex]\( 1^2 \)[/tex].
4. Apply the difference of squares formula:
- If we set [tex]\( a = 14q \)[/tex] and [tex]\( b = 1 \)[/tex], then [tex]\( 196q^2 - 1 \)[/tex] becomes [tex]\( (14q)^2 - 1^2 \)[/tex].
- Applying the difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex], we get:
[tex]\[ (14q)^2 - 1^2 = (14q - 1)(14q + 1) \][/tex]
5. Factored form:
- Thus, the expression can be factored into:
[tex]\[ 196q^2 - 1 = (14q - 1)(14q + 1) \][/tex]
In conclusion, the expression [tex]\( 196q^2 - 1 \)[/tex] can be factored as:
[tex]\[ 196q^2 - 1 = (14q - 1)(14q + 1) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.