Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the equation [tex]\(3 \ln(x) = 12\)[/tex] step-by-step.
Step 1: Start with the given equation:
[tex]\[ 3 \ln(x) = 12 \][/tex]
Step 2: Divide both sides of the equation by 3 to isolate [tex]\(\ln(x)\)[/tex].
[tex]\[ \frac{3 \ln(x)}{3} = \frac{12}{3} \][/tex]
[tex]\[ \ln(x) = 4 \][/tex]
Step 3: Rewrite the equation in its exponential form to solve for [tex]\(x\)[/tex]. The natural logarithm [tex]\(\ln(x)\)[/tex] is the power to which [tex]\(e\)[/tex] (the base of natural logarithms) must be raised to get [tex]\(x\)[/tex]. Therefore, [tex]\(\ln(x) = 4\)[/tex] can be written as:
[tex]\[ x = e^4 \][/tex]
Conclusion: The value of [tex]\(x\)[/tex] is [tex]\(e^4\)[/tex]. Given the precise numerical value from computations, [tex]\(e^4 \approx 54.598150033144236\)[/tex].
Thus, the complete solution is:
[tex]\[ \ln(x) = 4 \][/tex]
[tex]\[ x \approx 54.598150033144236 \][/tex]
So, the solution to the equation [tex]\(3 \ln(x) = 12\)[/tex] is:
[tex]\[ x \approx 54.598150033144236 \][/tex]
Step 1: Start with the given equation:
[tex]\[ 3 \ln(x) = 12 \][/tex]
Step 2: Divide both sides of the equation by 3 to isolate [tex]\(\ln(x)\)[/tex].
[tex]\[ \frac{3 \ln(x)}{3} = \frac{12}{3} \][/tex]
[tex]\[ \ln(x) = 4 \][/tex]
Step 3: Rewrite the equation in its exponential form to solve for [tex]\(x\)[/tex]. The natural logarithm [tex]\(\ln(x)\)[/tex] is the power to which [tex]\(e\)[/tex] (the base of natural logarithms) must be raised to get [tex]\(x\)[/tex]. Therefore, [tex]\(\ln(x) = 4\)[/tex] can be written as:
[tex]\[ x = e^4 \][/tex]
Conclusion: The value of [tex]\(x\)[/tex] is [tex]\(e^4\)[/tex]. Given the precise numerical value from computations, [tex]\(e^4 \approx 54.598150033144236\)[/tex].
Thus, the complete solution is:
[tex]\[ \ln(x) = 4 \][/tex]
[tex]\[ x \approx 54.598150033144236 \][/tex]
So, the solution to the equation [tex]\(3 \ln(x) = 12\)[/tex] is:
[tex]\[ x \approx 54.598150033144236 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.