Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the average atomic mass of an element with multiple isotopes, you can use the formula for weighted averages. The formula involves multiplying the atomic mass of each isotope by its relative abundance (as a decimal), then summing these values. Let's solve it step-by-step.
1. Convert the percentage abundances into decimal form:
- For X-63: [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- For X-65: [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]
2. Multiply the atomic mass of each isotope by its relative abundance:
- For X-63: [tex]\( 62.9296 \, \text{amu} \times 0.6915 \)[/tex]
- For X-65: [tex]\( 64.9278 \, \text{amu} \times 0.3085 \)[/tex]
3. Perform the multiplications:
- [tex]\( 62.9296 \times 0.6915 = 43.5112732 \)[/tex]
- [tex]\( 64.9278 \times 0.3085 = 20.0347715 \)[/tex]
4. Add the results together to find the average atomic mass:
- [tex]\( 43.5112732 + 20.0347715 = 63.5460447 \, \text{amu} \)[/tex]
5. Round the result to the nearest hundredth:
- [tex]\( 63.5460447 \rightarrow 63.55 \, \text{amu} \)[/tex]
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \, \text{amu} \)[/tex].
1. Convert the percentage abundances into decimal form:
- For X-63: [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- For X-65: [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]
2. Multiply the atomic mass of each isotope by its relative abundance:
- For X-63: [tex]\( 62.9296 \, \text{amu} \times 0.6915 \)[/tex]
- For X-65: [tex]\( 64.9278 \, \text{amu} \times 0.3085 \)[/tex]
3. Perform the multiplications:
- [tex]\( 62.9296 \times 0.6915 = 43.5112732 \)[/tex]
- [tex]\( 64.9278 \times 0.3085 = 20.0347715 \)[/tex]
4. Add the results together to find the average atomic mass:
- [tex]\( 43.5112732 + 20.0347715 = 63.5460447 \, \text{amu} \)[/tex]
5. Round the result to the nearest hundredth:
- [tex]\( 63.5460447 \rightarrow 63.55 \, \text{amu} \)[/tex]
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \, \text{amu} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.