Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Type the correct answer in the box. Round your answer to the nearest hundredth.

Element X has two isotopes. The table gives information about these isotopes.

\begin{tabular}{|c|c|c|}
\hline
Isotope & \begin{tabular}{c}
Atomic \\
Mass (amu)
\end{tabular} & \begin{tabular}{c}
Abundance \\
(\%)
\end{tabular} \\
\hline
X-63 & 62.9296 & 69.15 \\
\hline
X-65 & 64.9278 & 30.85 \\
\hline
\end{tabular}

The average atomic mass of element [tex]$X$[/tex] is [tex]$\square$[/tex] [tex]$amu$[/tex].

Sagot :

To find the average atomic mass of an element with multiple isotopes, you can use the formula for weighted averages. The formula involves multiplying the atomic mass of each isotope by its relative abundance (as a decimal), then summing these values. Let's solve it step-by-step.

1. Convert the percentage abundances into decimal form:
- For X-63: [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- For X-65: [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]

2. Multiply the atomic mass of each isotope by its relative abundance:
- For X-63: [tex]\( 62.9296 \, \text{amu} \times 0.6915 \)[/tex]
- For X-65: [tex]\( 64.9278 \, \text{amu} \times 0.3085 \)[/tex]

3. Perform the multiplications:
- [tex]\( 62.9296 \times 0.6915 = 43.5112732 \)[/tex]
- [tex]\( 64.9278 \times 0.3085 = 20.0347715 \)[/tex]

4. Add the results together to find the average atomic mass:
- [tex]\( 43.5112732 + 20.0347715 = 63.5460447 \, \text{amu} \)[/tex]

5. Round the result to the nearest hundredth:
- [tex]\( 63.5460447 \rightarrow 63.55 \, \text{amu} \)[/tex]

Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \, \text{amu} \)[/tex].