Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the equation that represents the direct variation between [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we are given that [tex]\( b \)[/tex] varies directly with [tex]\( a \)[/tex] and the specific values [tex]\( b = 2\frac{3}{4} \)[/tex] and [tex]\( a = -2\frac{3}{4} \)[/tex].
Let's break down what this means:
1. Understand the Relationship: In problems of direct variation, we typically know that [tex]\( b \)[/tex] varies directly with [tex]\( a \)[/tex]. This can be expressed as:
[tex]\[ b = k \cdot a \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
2. Substitute the Given Values: We substitute the given values into the equation to find [tex]\( k \)[/tex].
[tex]\[ b = 2\frac{3}{4} \quad \text{and} \quad a = -2\frac{3}{4} \][/tex]
Therefore,
[tex]\[ 2.75 = k \cdot (-2.75) \][/tex]
3. Solve for [tex]\( k \)[/tex]: To find [tex]\( k \)[/tex], we solve the equation:
[tex]\[ k = \frac{2.75}{-2.75} = -1 \][/tex]
4. Write the Equation: Now that we have determined [tex]\( k \)[/tex], we substitute it back into the direct variation equation:
[tex]\[ b = -1 \cdot a \][/tex]
Simplifying,
[tex]\[ b = -a \][/tex]
Therefore, the equation that represents this direct variation is:
[tex]\[ b = -a \][/tex]
To verify, here are the equations with reasons as to why they don't fit:
- [tex]\(\boldsymbol{-b=-a}\)[/tex]: This simplifies to [tex]\( b = a \)[/tex], which does not match the given values.
- [tex]\(\boldsymbol{b-a=0}\)[/tex]: This also simplifies to [tex]\( b = a \)[/tex], which again does not match the given values.
- [tex]\(\boldsymbol{b(-a)=0}\)[/tex]: This implies [tex]\( b=0 \)[/tex] or [tex]\( -a=0 \)[/tex], which is not relevant to the given values.
Hence, the correct representation is:
[tex]\(\boxed{b = -a}\)[/tex]
Let's break down what this means:
1. Understand the Relationship: In problems of direct variation, we typically know that [tex]\( b \)[/tex] varies directly with [tex]\( a \)[/tex]. This can be expressed as:
[tex]\[ b = k \cdot a \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
2. Substitute the Given Values: We substitute the given values into the equation to find [tex]\( k \)[/tex].
[tex]\[ b = 2\frac{3}{4} \quad \text{and} \quad a = -2\frac{3}{4} \][/tex]
Therefore,
[tex]\[ 2.75 = k \cdot (-2.75) \][/tex]
3. Solve for [tex]\( k \)[/tex]: To find [tex]\( k \)[/tex], we solve the equation:
[tex]\[ k = \frac{2.75}{-2.75} = -1 \][/tex]
4. Write the Equation: Now that we have determined [tex]\( k \)[/tex], we substitute it back into the direct variation equation:
[tex]\[ b = -1 \cdot a \][/tex]
Simplifying,
[tex]\[ b = -a \][/tex]
Therefore, the equation that represents this direct variation is:
[tex]\[ b = -a \][/tex]
To verify, here are the equations with reasons as to why they don't fit:
- [tex]\(\boldsymbol{-b=-a}\)[/tex]: This simplifies to [tex]\( b = a \)[/tex], which does not match the given values.
- [tex]\(\boldsymbol{b-a=0}\)[/tex]: This also simplifies to [tex]\( b = a \)[/tex], which again does not match the given values.
- [tex]\(\boldsymbol{b(-a)=0}\)[/tex]: This implies [tex]\( b=0 \)[/tex] or [tex]\( -a=0 \)[/tex], which is not relevant to the given values.
Hence, the correct representation is:
[tex]\(\boxed{b = -a}\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.