Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's write an equation for a rational function that satisfies the following conditions:
1. Vertical asymptotes at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]
2. [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]
3. [tex]\( y \)[/tex]-intercept at 5
### Step-by-Step Solution:
1. Vertical Asymptotes:
The vertical asymptotes occur where the denominator of the rational function is zero. Therefore, the denominator must have factors that become zero at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]. Hence, the denominator can be written as:
[tex]\[ D(x) = (x + 5)(x - 6) \][/tex]
2. [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts occur where the numerator of the rational function is zero. Therefore, the numerator must have factors that become zero at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]. Hence, the numerator can be written as:
[tex]\[ N(x) = (x - 1)(x - 4) \][/tex]
3. Forming the Rational Function:
Combining the numerator and the denominator, we have:
[tex]\[ R(x) = \frac{N(x)}{D(x)} = \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
At this stage, the rational function does not yet account for the [tex]\( y \)[/tex]-intercept.
4. Adjusting for the [tex]\( y \)[/tex]-Intercept:
To ensure the [tex]\( y \)[/tex]-intercept is 5 (i.e., [tex]\( R(0) = 5 \)[/tex]), we need to determine a constant factor [tex]\( k \)[/tex] that will adjust the function accordingly.
First, find the value of the function at [tex]\( x = 0 \)[/tex] without the constant:
[tex]\[ R(0) = \frac{(0 - 1)(0 - 4)}{(0 + 5)(0 - 6)} = \frac{(-1)(-4)}{(5)(-6)} = \frac{4}{-30} = -\frac{2}{15} \][/tex]
To achieve the [tex]\( y \)[/tex]-intercept of 5, we need:
[tex]\[ k \cdot \left(-\frac{2}{15}\right) = 5 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 5 \cdot \left(-\frac{15}{2}\right) = -\frac{75}{2} \][/tex]
5. Final Rational Function:
The final rational function, taking into account the constant [tex]\( k \)[/tex], is:
[tex]\[ R(x) = k \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} = -\frac{75}{2} \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
Simplifying, we get:
[tex]\[ R(x) = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
### Final Answer:
[tex]\[ y = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
1. Vertical asymptotes at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]
2. [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]
3. [tex]\( y \)[/tex]-intercept at 5
### Step-by-Step Solution:
1. Vertical Asymptotes:
The vertical asymptotes occur where the denominator of the rational function is zero. Therefore, the denominator must have factors that become zero at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]. Hence, the denominator can be written as:
[tex]\[ D(x) = (x + 5)(x - 6) \][/tex]
2. [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts occur where the numerator of the rational function is zero. Therefore, the numerator must have factors that become zero at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]. Hence, the numerator can be written as:
[tex]\[ N(x) = (x - 1)(x - 4) \][/tex]
3. Forming the Rational Function:
Combining the numerator and the denominator, we have:
[tex]\[ R(x) = \frac{N(x)}{D(x)} = \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
At this stage, the rational function does not yet account for the [tex]\( y \)[/tex]-intercept.
4. Adjusting for the [tex]\( y \)[/tex]-Intercept:
To ensure the [tex]\( y \)[/tex]-intercept is 5 (i.e., [tex]\( R(0) = 5 \)[/tex]), we need to determine a constant factor [tex]\( k \)[/tex] that will adjust the function accordingly.
First, find the value of the function at [tex]\( x = 0 \)[/tex] without the constant:
[tex]\[ R(0) = \frac{(0 - 1)(0 - 4)}{(0 + 5)(0 - 6)} = \frac{(-1)(-4)}{(5)(-6)} = \frac{4}{-30} = -\frac{2}{15} \][/tex]
To achieve the [tex]\( y \)[/tex]-intercept of 5, we need:
[tex]\[ k \cdot \left(-\frac{2}{15}\right) = 5 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 5 \cdot \left(-\frac{15}{2}\right) = -\frac{75}{2} \][/tex]
5. Final Rational Function:
The final rational function, taking into account the constant [tex]\( k \)[/tex], is:
[tex]\[ R(x) = k \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} = -\frac{75}{2} \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
Simplifying, we get:
[tex]\[ R(x) = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
### Final Answer:
[tex]\[ y = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.