At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's write an equation for a rational function that satisfies the following conditions:
1. Vertical asymptotes at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]
2. [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]
3. [tex]\( y \)[/tex]-intercept at 5
### Step-by-Step Solution:
1. Vertical Asymptotes:
The vertical asymptotes occur where the denominator of the rational function is zero. Therefore, the denominator must have factors that become zero at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]. Hence, the denominator can be written as:
[tex]\[ D(x) = (x + 5)(x - 6) \][/tex]
2. [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts occur where the numerator of the rational function is zero. Therefore, the numerator must have factors that become zero at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]. Hence, the numerator can be written as:
[tex]\[ N(x) = (x - 1)(x - 4) \][/tex]
3. Forming the Rational Function:
Combining the numerator and the denominator, we have:
[tex]\[ R(x) = \frac{N(x)}{D(x)} = \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
At this stage, the rational function does not yet account for the [tex]\( y \)[/tex]-intercept.
4. Adjusting for the [tex]\( y \)[/tex]-Intercept:
To ensure the [tex]\( y \)[/tex]-intercept is 5 (i.e., [tex]\( R(0) = 5 \)[/tex]), we need to determine a constant factor [tex]\( k \)[/tex] that will adjust the function accordingly.
First, find the value of the function at [tex]\( x = 0 \)[/tex] without the constant:
[tex]\[ R(0) = \frac{(0 - 1)(0 - 4)}{(0 + 5)(0 - 6)} = \frac{(-1)(-4)}{(5)(-6)} = \frac{4}{-30} = -\frac{2}{15} \][/tex]
To achieve the [tex]\( y \)[/tex]-intercept of 5, we need:
[tex]\[ k \cdot \left(-\frac{2}{15}\right) = 5 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 5 \cdot \left(-\frac{15}{2}\right) = -\frac{75}{2} \][/tex]
5. Final Rational Function:
The final rational function, taking into account the constant [tex]\( k \)[/tex], is:
[tex]\[ R(x) = k \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} = -\frac{75}{2} \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
Simplifying, we get:
[tex]\[ R(x) = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
### Final Answer:
[tex]\[ y = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
1. Vertical asymptotes at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]
2. [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]
3. [tex]\( y \)[/tex]-intercept at 5
### Step-by-Step Solution:
1. Vertical Asymptotes:
The vertical asymptotes occur where the denominator of the rational function is zero. Therefore, the denominator must have factors that become zero at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]. Hence, the denominator can be written as:
[tex]\[ D(x) = (x + 5)(x - 6) \][/tex]
2. [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts occur where the numerator of the rational function is zero. Therefore, the numerator must have factors that become zero at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]. Hence, the numerator can be written as:
[tex]\[ N(x) = (x - 1)(x - 4) \][/tex]
3. Forming the Rational Function:
Combining the numerator and the denominator, we have:
[tex]\[ R(x) = \frac{N(x)}{D(x)} = \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
At this stage, the rational function does not yet account for the [tex]\( y \)[/tex]-intercept.
4. Adjusting for the [tex]\( y \)[/tex]-Intercept:
To ensure the [tex]\( y \)[/tex]-intercept is 5 (i.e., [tex]\( R(0) = 5 \)[/tex]), we need to determine a constant factor [tex]\( k \)[/tex] that will adjust the function accordingly.
First, find the value of the function at [tex]\( x = 0 \)[/tex] without the constant:
[tex]\[ R(0) = \frac{(0 - 1)(0 - 4)}{(0 + 5)(0 - 6)} = \frac{(-1)(-4)}{(5)(-6)} = \frac{4}{-30} = -\frac{2}{15} \][/tex]
To achieve the [tex]\( y \)[/tex]-intercept of 5, we need:
[tex]\[ k \cdot \left(-\frac{2}{15}\right) = 5 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 5 \cdot \left(-\frac{15}{2}\right) = -\frac{75}{2} \][/tex]
5. Final Rational Function:
The final rational function, taking into account the constant [tex]\( k \)[/tex], is:
[tex]\[ R(x) = k \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} = -\frac{75}{2} \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
Simplifying, we get:
[tex]\[ R(x) = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
### Final Answer:
[tex]\[ y = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.