Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's write an equation for a rational function that satisfies the following conditions:
1. Vertical asymptotes at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]
2. [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]
3. [tex]\( y \)[/tex]-intercept at 5
### Step-by-Step Solution:
1. Vertical Asymptotes:
The vertical asymptotes occur where the denominator of the rational function is zero. Therefore, the denominator must have factors that become zero at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]. Hence, the denominator can be written as:
[tex]\[ D(x) = (x + 5)(x - 6) \][/tex]
2. [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts occur where the numerator of the rational function is zero. Therefore, the numerator must have factors that become zero at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]. Hence, the numerator can be written as:
[tex]\[ N(x) = (x - 1)(x - 4) \][/tex]
3. Forming the Rational Function:
Combining the numerator and the denominator, we have:
[tex]\[ R(x) = \frac{N(x)}{D(x)} = \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
At this stage, the rational function does not yet account for the [tex]\( y \)[/tex]-intercept.
4. Adjusting for the [tex]\( y \)[/tex]-Intercept:
To ensure the [tex]\( y \)[/tex]-intercept is 5 (i.e., [tex]\( R(0) = 5 \)[/tex]), we need to determine a constant factor [tex]\( k \)[/tex] that will adjust the function accordingly.
First, find the value of the function at [tex]\( x = 0 \)[/tex] without the constant:
[tex]\[ R(0) = \frac{(0 - 1)(0 - 4)}{(0 + 5)(0 - 6)} = \frac{(-1)(-4)}{(5)(-6)} = \frac{4}{-30} = -\frac{2}{15} \][/tex]
To achieve the [tex]\( y \)[/tex]-intercept of 5, we need:
[tex]\[ k \cdot \left(-\frac{2}{15}\right) = 5 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 5 \cdot \left(-\frac{15}{2}\right) = -\frac{75}{2} \][/tex]
5. Final Rational Function:
The final rational function, taking into account the constant [tex]\( k \)[/tex], is:
[tex]\[ R(x) = k \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} = -\frac{75}{2} \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
Simplifying, we get:
[tex]\[ R(x) = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
### Final Answer:
[tex]\[ y = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
1. Vertical asymptotes at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]
2. [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]
3. [tex]\( y \)[/tex]-intercept at 5
### Step-by-Step Solution:
1. Vertical Asymptotes:
The vertical asymptotes occur where the denominator of the rational function is zero. Therefore, the denominator must have factors that become zero at [tex]\( x = -5 \)[/tex] and [tex]\( x = 6 \)[/tex]. Hence, the denominator can be written as:
[tex]\[ D(x) = (x + 5)(x - 6) \][/tex]
2. [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts occur where the numerator of the rational function is zero. Therefore, the numerator must have factors that become zero at [tex]\( x = 1 \)[/tex] and [tex]\( x = 4 \)[/tex]. Hence, the numerator can be written as:
[tex]\[ N(x) = (x - 1)(x - 4) \][/tex]
3. Forming the Rational Function:
Combining the numerator and the denominator, we have:
[tex]\[ R(x) = \frac{N(x)}{D(x)} = \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
At this stage, the rational function does not yet account for the [tex]\( y \)[/tex]-intercept.
4. Adjusting for the [tex]\( y \)[/tex]-Intercept:
To ensure the [tex]\( y \)[/tex]-intercept is 5 (i.e., [tex]\( R(0) = 5 \)[/tex]), we need to determine a constant factor [tex]\( k \)[/tex] that will adjust the function accordingly.
First, find the value of the function at [tex]\( x = 0 \)[/tex] without the constant:
[tex]\[ R(0) = \frac{(0 - 1)(0 - 4)}{(0 + 5)(0 - 6)} = \frac{(-1)(-4)}{(5)(-6)} = \frac{4}{-30} = -\frac{2}{15} \][/tex]
To achieve the [tex]\( y \)[/tex]-intercept of 5, we need:
[tex]\[ k \cdot \left(-\frac{2}{15}\right) = 5 \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = 5 \cdot \left(-\frac{15}{2}\right) = -\frac{75}{2} \][/tex]
5. Final Rational Function:
The final rational function, taking into account the constant [tex]\( k \)[/tex], is:
[tex]\[ R(x) = k \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} = -\frac{75}{2} \cdot \frac{(x - 1)(x - 4)}{(x + 5)(x - 6)} \][/tex]
Simplifying, we get:
[tex]\[ R(x) = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
### Final Answer:
[tex]\[ y = \frac{-75 (x - 1) (x - 4)}{2 (x + 5) (x - 6)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.