Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the given question, we must determine which of the provided options correctly applies the work-energy theorem. According to this theorem, the work done on an object is equal to the change in its kinetic energy.
The kinetic energy (KE) of an object with mass [tex]\( m \)[/tex] and velocity [tex]\( v \)[/tex] is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
The work done [tex]\( W \)[/tex] on the object can be described as the change in kinetic energy:
[tex]\[ W = \Delta KE = KE_{final} - KE_{initial} \][/tex]
Where [tex]\( KE_{final} \)[/tex] is the kinetic energy with the final velocity [tex]\( v_f \)[/tex], and [tex]\( KE_{initial} \)[/tex] is the kinetic energy with the initial velocity [tex]\( v_i \)[/tex].
[tex]\[ KE_{final} = \frac{1}{2} m v_f^2 \][/tex]
[tex]\[ KE_{initial} = \frac{1}{2} m v_i^2 \][/tex]
Therefore, the change in kinetic energy [tex]\( \Delta KE \)[/tex] is:
[tex]\[ \Delta KE = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \][/tex]
[tex]\[ \Delta KE = \frac{1}{2} m (v_f^2 - v_i^2) \][/tex]
Thus, the formula for the work done [tex]\( W \)[/tex] using the work-energy theorem is:
[tex]\[ W = \frac{1}{2} m (v_f^2 - v_i^2) \][/tex]
Comparing this with the given options, the correct choice is:
[tex]\[ W = \Delta KE = \frac{1}{2} m (v_f^2 - v_i^2) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
The kinetic energy (KE) of an object with mass [tex]\( m \)[/tex] and velocity [tex]\( v \)[/tex] is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
The work done [tex]\( W \)[/tex] on the object can be described as the change in kinetic energy:
[tex]\[ W = \Delta KE = KE_{final} - KE_{initial} \][/tex]
Where [tex]\( KE_{final} \)[/tex] is the kinetic energy with the final velocity [tex]\( v_f \)[/tex], and [tex]\( KE_{initial} \)[/tex] is the kinetic energy with the initial velocity [tex]\( v_i \)[/tex].
[tex]\[ KE_{final} = \frac{1}{2} m v_f^2 \][/tex]
[tex]\[ KE_{initial} = \frac{1}{2} m v_i^2 \][/tex]
Therefore, the change in kinetic energy [tex]\( \Delta KE \)[/tex] is:
[tex]\[ \Delta KE = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \][/tex]
[tex]\[ \Delta KE = \frac{1}{2} m (v_f^2 - v_i^2) \][/tex]
Thus, the formula for the work done [tex]\( W \)[/tex] using the work-energy theorem is:
[tex]\[ W = \frac{1}{2} m (v_f^2 - v_i^2) \][/tex]
Comparing this with the given options, the correct choice is:
[tex]\[ W = \Delta KE = \frac{1}{2} m (v_f^2 - v_i^2) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.