At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's determine the degree of each polynomial expression step-by-step.
### Explanation:
1. Degrees of a Polynomial:
- The degree of a polynomial is the highest power of the variable in the expression.
- Constant terms (numbers without variables) have a degree of 0.
- The degree of a zero polynomial (if any term only multiplies 0) is usually not defined, but is sometimes considered to be -∞ for comparative purposes.
### Examining Each Polynomial Expression:
Let's look at each polynomial one by one to find the degree.
1. Expression: [tex]\( x - 9 \)[/tex]
- The variable [tex]\( x \)[/tex] is raised to the power of 1.
- Therefore, the degree is 1.
2. Expression: [tex]\( -4x^2 - 6x + 9 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 2 (from the term [tex]\( -4x^2 \)[/tex]).
- Therefore, the degree is 2.
3. Expression: [tex]\( x^2 - 2x + 9 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 2 (from the term [tex]\( x^2 \)[/tex]).
- Therefore, the degree is 2.
4. Expression: [tex]\( -3 \)[/tex]
- This is a constant term, so it does not have any variable.
- Therefore, the degree is 0.
5. Expression: [tex]\( 3x - 2 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 1 (from the term [tex]\( 3x \)[/tex]).
- Therefore, the degree is 1.
6. Expression: [tex]\( 6x + 2 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 1 (from the term [tex]\( 6x \)[/tex]).
- Therefore, the degree is 1.
7. Expression: [tex]\( 5 \)[/tex]
- This is a constant term, so it does not have any variable.
- Therefore, the degree is 0.
### Summary of Degrees:
Let's summarize the degrees:
[tex]\[ \begin{array}{c|c} \text{Polynomial Expression} & \text{Degree} \\ \hline x-9 & 1 \\ -4 x^2-6 x+9 & 2 \\ x^2-2 x+9 & 2 \\ -3 & 0 \\ 3 x-2 & 1 \\ 6 x+2 & 1 \\ 5 & 0 \\ \end{array} \][/tex]
So, the degrees of the polynomial expressions in your list are:
[tex]\[ \begin{array}{c} 1 \\ 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ \end{array} \][/tex]
### Explanation:
1. Degrees of a Polynomial:
- The degree of a polynomial is the highest power of the variable in the expression.
- Constant terms (numbers without variables) have a degree of 0.
- The degree of a zero polynomial (if any term only multiplies 0) is usually not defined, but is sometimes considered to be -∞ for comparative purposes.
### Examining Each Polynomial Expression:
Let's look at each polynomial one by one to find the degree.
1. Expression: [tex]\( x - 9 \)[/tex]
- The variable [tex]\( x \)[/tex] is raised to the power of 1.
- Therefore, the degree is 1.
2. Expression: [tex]\( -4x^2 - 6x + 9 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 2 (from the term [tex]\( -4x^2 \)[/tex]).
- Therefore, the degree is 2.
3. Expression: [tex]\( x^2 - 2x + 9 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 2 (from the term [tex]\( x^2 \)[/tex]).
- Therefore, the degree is 2.
4. Expression: [tex]\( -3 \)[/tex]
- This is a constant term, so it does not have any variable.
- Therefore, the degree is 0.
5. Expression: [tex]\( 3x - 2 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 1 (from the term [tex]\( 3x \)[/tex]).
- Therefore, the degree is 1.
6. Expression: [tex]\( 6x + 2 \)[/tex]
- The highest power of the variable [tex]\( x \)[/tex] is 1 (from the term [tex]\( 6x \)[/tex]).
- Therefore, the degree is 1.
7. Expression: [tex]\( 5 \)[/tex]
- This is a constant term, so it does not have any variable.
- Therefore, the degree is 0.
### Summary of Degrees:
Let's summarize the degrees:
[tex]\[ \begin{array}{c|c} \text{Polynomial Expression} & \text{Degree} \\ \hline x-9 & 1 \\ -4 x^2-6 x+9 & 2 \\ x^2-2 x+9 & 2 \\ -3 & 0 \\ 3 x-2 & 1 \\ 6 x+2 & 1 \\ 5 & 0 \\ \end{array} \][/tex]
So, the degrees of the polynomial expressions in your list are:
[tex]\[ \begin{array}{c} 1 \\ 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ \end{array} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.