Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = \log(x-1) + 2 \)[/tex], let's analyze the function step-by-step.
### Domain:
The domain of a function refers to all possible input values [tex]\( x \)[/tex] that will yield a real number output for [tex]\( f(x) \)[/tex].
For the function [tex]\( f(x) = \log(x-1) + 2 \)[/tex]:
1. The logarithm function [tex]\( \log(y) \)[/tex] is defined only for [tex]\( y > 0 \)[/tex]. Therefore, for [tex]\( \log(x-1) \)[/tex] to be defined, the argument [tex]\( x-1 \)[/tex] must be positive.
[tex]\[ x - 1 > 0 \quad \Rightarrow \quad x > 1 \][/tex]
2. Thus, the domain of [tex]\( f(x) = \log(x-1) + 2 \)[/tex] is all [tex]\( x \)[/tex] such that [tex]\( x > 1 \)[/tex].
### Range:
The range of a function refers to all possible output values [tex]\( y \)[/tex] of [tex]\( f(x) \)[/tex].
For the function [tex]\( f(x) = \log(x-1) + 2 \)[/tex]:
1. The range of the logarithmic function [tex]\( \log(y) \)[/tex] itself is all real numbers, i.e., [tex]\( \log(y) \)[/tex] can produce any real number from [tex]\(-\infty\)[/tex] to [tex]\(+\infty\)[/tex].
2. Since adding a constant (in this case, adding 2) to the logarithmic function [tex]\( \log(x-1) \)[/tex] simply shifts its graph vertically, the range of [tex]\( f(x) = \log(x-1) + 2 \)[/tex] remains the set of all real numbers. This vertical shift does not restrict the output values: it only relocates them.
Thus, the range of [tex]\( f(x) = \log(x-1) + 2 \)[/tex] is all real numbers, i.e., [tex]\( (-\infty, \infty) \)[/tex].
### Conclusion:
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( x > 1 \)[/tex].
- The range of [tex]\( f(x) \)[/tex] is all real numbers.
Therefore, the correct choice is:
Domain: [tex]\( x > 1 \)[/tex]; Range: all real numbers
### Domain:
The domain of a function refers to all possible input values [tex]\( x \)[/tex] that will yield a real number output for [tex]\( f(x) \)[/tex].
For the function [tex]\( f(x) = \log(x-1) + 2 \)[/tex]:
1. The logarithm function [tex]\( \log(y) \)[/tex] is defined only for [tex]\( y > 0 \)[/tex]. Therefore, for [tex]\( \log(x-1) \)[/tex] to be defined, the argument [tex]\( x-1 \)[/tex] must be positive.
[tex]\[ x - 1 > 0 \quad \Rightarrow \quad x > 1 \][/tex]
2. Thus, the domain of [tex]\( f(x) = \log(x-1) + 2 \)[/tex] is all [tex]\( x \)[/tex] such that [tex]\( x > 1 \)[/tex].
### Range:
The range of a function refers to all possible output values [tex]\( y \)[/tex] of [tex]\( f(x) \)[/tex].
For the function [tex]\( f(x) = \log(x-1) + 2 \)[/tex]:
1. The range of the logarithmic function [tex]\( \log(y) \)[/tex] itself is all real numbers, i.e., [tex]\( \log(y) \)[/tex] can produce any real number from [tex]\(-\infty\)[/tex] to [tex]\(+\infty\)[/tex].
2. Since adding a constant (in this case, adding 2) to the logarithmic function [tex]\( \log(x-1) \)[/tex] simply shifts its graph vertically, the range of [tex]\( f(x) = \log(x-1) + 2 \)[/tex] remains the set of all real numbers. This vertical shift does not restrict the output values: it only relocates them.
Thus, the range of [tex]\( f(x) = \log(x-1) + 2 \)[/tex] is all real numbers, i.e., [tex]\( (-\infty, \infty) \)[/tex].
### Conclusion:
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( x > 1 \)[/tex].
- The range of [tex]\( f(x) \)[/tex] is all real numbers.
Therefore, the correct choice is:
Domain: [tex]\( x > 1 \)[/tex]; Range: all real numbers
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.