Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given translations corresponds to the rule [tex]\( T_{-8,4}(x, y) \)[/tex], we need to understand the notation and how translations work in the coordinate plane.
The notation [tex]\( T_{-8,4}(x, y) \)[/tex] indicates a translation. Specifically:
- The [tex]\( -8 \)[/tex] indicates that each x-coordinate is decreased by 8.
- The [tex]\( +4 \)[/tex] indicates that each y-coordinate is increased by 4.
In other words, any point [tex]\((x, y)\)[/tex] on the plane will move to a new point [tex]\((x - 8, y + 4)\)[/tex].
Now, let's analyze each of the given translation rules:
1. [tex]\((x, y) \rightarrow (x+4, y-8)\)[/tex]:
- This rule means that the x-coordinate is increased by 4, and the y-coordinate is decreased by 8.
- This does not match the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
2. [tex]\((x, y) \rightarrow (x-4, y-8)\)[/tex]:
- This rule means that the x-coordinate is decreased by 4, and the y-coordinate is decreased by 8.
- This also does not match the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
3. [tex]\((x, y) \rightarrow (x-8, y+4)\)[/tex]:
- This rule means that the x-coordinate is decreased by 8, and the y-coordinate is increased by 4.
- This matches exactly with the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
4. [tex]\((x, y) \rightarrow (x+8, y-4)\)[/tex]:
- This rule means that the x-coordinate is increased by 8, and the y-coordinate is decreased by 4.
- This does not match the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
Therefore, the correct way to write the rule [tex]\( T_{-8,4}(x, y) \)[/tex] is [tex]\((x, y) \rightarrow (x-8, y+4)\)[/tex].
Hence, the answer is: [tex]\((x, y) \rightarrow (x-8, y+4)\)[/tex].
The notation [tex]\( T_{-8,4}(x, y) \)[/tex] indicates a translation. Specifically:
- The [tex]\( -8 \)[/tex] indicates that each x-coordinate is decreased by 8.
- The [tex]\( +4 \)[/tex] indicates that each y-coordinate is increased by 4.
In other words, any point [tex]\((x, y)\)[/tex] on the plane will move to a new point [tex]\((x - 8, y + 4)\)[/tex].
Now, let's analyze each of the given translation rules:
1. [tex]\((x, y) \rightarrow (x+4, y-8)\)[/tex]:
- This rule means that the x-coordinate is increased by 4, and the y-coordinate is decreased by 8.
- This does not match the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
2. [tex]\((x, y) \rightarrow (x-4, y-8)\)[/tex]:
- This rule means that the x-coordinate is decreased by 4, and the y-coordinate is decreased by 8.
- This also does not match the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
3. [tex]\((x, y) \rightarrow (x-8, y+4)\)[/tex]:
- This rule means that the x-coordinate is decreased by 8, and the y-coordinate is increased by 4.
- This matches exactly with the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
4. [tex]\((x, y) \rightarrow (x+8, y-4)\)[/tex]:
- This rule means that the x-coordinate is increased by 8, and the y-coordinate is decreased by 4.
- This does not match the translation specified in [tex]\( T_{-8,4}(x, y) \)[/tex].
Therefore, the correct way to write the rule [tex]\( T_{-8,4}(x, y) \)[/tex] is [tex]\((x, y) \rightarrow (x-8, y+4)\)[/tex].
Hence, the answer is: [tex]\((x, y) \rightarrow (x-8, y+4)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.