Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which terms, when added to [tex]\(3x^2y\)[/tex], will result in a monomial, let's analyze each given term one by one:
1. Term: [tex]\(3xy\)[/tex]
- [tex]\(3x^2y\)[/tex] has the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(3xy\)[/tex] has the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- The terms do not share the same degree of [tex]\(x\)[/tex], hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
2. Term: [tex]\(-12x^2y\)[/tex]
- [tex]\(3x^2y\)[/tex] has exactly the same variables ([tex]\(x^2\)[/tex] and [tex]\(y\)[/tex]) as [tex]\(-12x^2y\)[/tex].
- Adding these terms will result in [tex]\((3 - 12)x^2y = -9x^2y\)[/tex], which is a monomial.
- [tex]\((\boxed{Valid~monomial})\)[/tex]
3. Term: [tex]\(2x^2y^2\)[/tex]
- [tex]\(3x^2y\)[/tex] includes the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(2x^2y^2\)[/tex] includes the variables [tex]\(x^2\)[/tex] and [tex]\(y^2\)[/tex].
- The terms have different degrees of [tex]\(y\)[/tex], hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
4. Term: [tex]\(7xy^2\)[/tex]
- [tex]\(3x^2y\)[/tex] has the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(7xy^2\)[/tex] has the variables [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex].
- The terms do not share the same degree of variables, hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
5. Term: [tex]\(-10x^2\)[/tex]
- [tex]\(3x^2y\)[/tex] includes [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(-10x^2\)[/tex] includes only [tex]\(x^2\)[/tex].
- The terms do not share the same variables, hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
6. Term: [tex]\(4x^2y\)[/tex]
- [tex]\(3x^2y\)[/tex] includes the same variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex] as [tex]\(4x^2y\)[/tex].
- Adding these terms will result in [tex]\((3 + 4)x^2y = 7x^2y\)[/tex], which is a monomial.
- [tex]\((\boxed{Valid~monomial})\)[/tex]
7. Term: [tex]\(3x^3\)[/tex]
- [tex]\(3x^2y\)[/tex] has the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(3x^3\)[/tex] only has the variable [tex]\(x^3\)[/tex].
- The terms do not share the same degree of variables, hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
In conclusion, the terms that will result in a monomial when added to [tex]\(3x^2y\)[/tex] are:
- [tex]\(-12x^2y\)[/tex]
- [tex]\(4x^2y\)[/tex]
Thus, the valid terms are:
- [tex]\(-12 x^2 y\)[/tex]
- [tex]\(4 x^2 y\)[/tex]
1. Term: [tex]\(3xy\)[/tex]
- [tex]\(3x^2y\)[/tex] has the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(3xy\)[/tex] has the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- The terms do not share the same degree of [tex]\(x\)[/tex], hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
2. Term: [tex]\(-12x^2y\)[/tex]
- [tex]\(3x^2y\)[/tex] has exactly the same variables ([tex]\(x^2\)[/tex] and [tex]\(y\)[/tex]) as [tex]\(-12x^2y\)[/tex].
- Adding these terms will result in [tex]\((3 - 12)x^2y = -9x^2y\)[/tex], which is a monomial.
- [tex]\((\boxed{Valid~monomial})\)[/tex]
3. Term: [tex]\(2x^2y^2\)[/tex]
- [tex]\(3x^2y\)[/tex] includes the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(2x^2y^2\)[/tex] includes the variables [tex]\(x^2\)[/tex] and [tex]\(y^2\)[/tex].
- The terms have different degrees of [tex]\(y\)[/tex], hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
4. Term: [tex]\(7xy^2\)[/tex]
- [tex]\(3x^2y\)[/tex] has the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(7xy^2\)[/tex] has the variables [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex].
- The terms do not share the same degree of variables, hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
5. Term: [tex]\(-10x^2\)[/tex]
- [tex]\(3x^2y\)[/tex] includes [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(-10x^2\)[/tex] includes only [tex]\(x^2\)[/tex].
- The terms do not share the same variables, hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
6. Term: [tex]\(4x^2y\)[/tex]
- [tex]\(3x^2y\)[/tex] includes the same variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex] as [tex]\(4x^2y\)[/tex].
- Adding these terms will result in [tex]\((3 + 4)x^2y = 7x^2y\)[/tex], which is a monomial.
- [tex]\((\boxed{Valid~monomial})\)[/tex]
7. Term: [tex]\(3x^3\)[/tex]
- [tex]\(3x^2y\)[/tex] has the variables [tex]\(x^2\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(3x^3\)[/tex] only has the variable [tex]\(x^3\)[/tex].
- The terms do not share the same degree of variables, hence they cannot be combined to form a monomial.
- [tex]\((\boxed{Not~a~monomial})\)[/tex]
In conclusion, the terms that will result in a monomial when added to [tex]\(3x^2y\)[/tex] are:
- [tex]\(-12x^2y\)[/tex]
- [tex]\(4x^2y\)[/tex]
Thus, the valid terms are:
- [tex]\(-12 x^2 y\)[/tex]
- [tex]\(4 x^2 y\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.